A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 5
May  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J.-Z. Xu, Z.-W. Liu, M.-F. Ge, Y.-W. Wang, and D. He, “Distributed robust predefined-time algorithm for seeking Nash equilibrium in MASs,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 5, pp. 1053–1055, May 2025. doi: 10.1109/JAS.2023.123879
Citation: J.-Z. Xu, Z.-W. Liu, M.-F. Ge, Y.-W. Wang, and D. He, “Distributed robust predefined-time algorithm for seeking Nash equilibrium in MASs,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 5, pp. 1053–1055, May 2025. doi: 10.1109/JAS.2023.123879

Distributed Robust Predefined-Time Algorithm for Seeking Nash Equilibrium in MASs

doi: 10.1109/JAS.2023.123879
More Information
  • loading
  • [1]
    R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 401–420, 2006. doi: 10.1109/TAC.2005.864190
    [2]
    M. Firouzbahrami and A. Nobakhti, “Cooperative fixed-time/finite-time distributed robust optimization of multi-agent systems,” Automatica, vol. 142, p. 110358, 2022. doi: 10.1016/j.automatica.2022.110358
    [3]
    M. Ye, Q.-L Han, L. Ding, and S. Xu, “Distributed Nash equilibrium seeking in games with partial decision information: A survey,” Proc. IEEE, vol. 111, no. 2, pp. 140–157, 2023. doi: 10.1109/JPROC.2023.3234687
    [4]
    X. F. Wang, X. M. Sun, A. R. Teel, and K. Z. Liu, “Distributed robust Nash equilibrium seeking for aggregative games under persistent attacks: A hybrid systems approach,” Automatica, vol. 122, p. 109255, 2020. doi: 10.1016/j.automatica.2020.109255
    [5]
    M. Ye, D. Li, Q.-L. Han, and L. Ding, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, 2022.
    [6]
    X. Fang, J. Lü, and G. Wen, “Distributed finite-time Nash equilibrium seeking for non-cooperative games,” CSIAM Trans. Appl. Math., vol. 2, no. 1, pp. 162–174, 2021. doi: 10.4208/csiam-am.2020-0028
    [7]
    Z. Li and Z. Ding. “Distributed Nash equilibrium searching via fixed-time consensus-based algorithms,” in Proc. American Control Conf. 2019, pp. 2765−2770.
    [8]
    J. I. Poveda, M. Krstic, and T. Basar, “Fixed-time Nash equilibrium seeking in time-varying networks,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 1954–1969, 2022. doi: 10.1109/TAC.2022.3168527
    [9]
    M. Ye, “Distributed robust seeking of Nash equilibrium for networked games: An extended state observer-based approach,” IEEE Trans. Cybern., vol. 52, no. 3, pp. 1527–1538, 2020.
    [10]
    A. J. Munoz-Vazquez, J. D. Sánchez-Torres, E. Jimenez-Rodriguez, and A. G. Loukianov, “Predefined-time robust stabilization of robotic manipulators,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1033–1040, 2019. doi: 10.1109/TMECH.2019.2906289

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (33) PDF downloads(15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return