A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 3
Mar.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
X. Liang, W. W. Yan, Y. S. Fu, and H. H. Shao, “Process monitoring based on temporal feature agglomeration and enhancement,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 825–827, Mar. 2023. doi: 10.1109/JAS.2023.123114
Citation: X. Liang, W. W. Yan, Y. S. Fu, and H. H. Shao, “Process monitoring based on temporal feature agglomeration and enhancement,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 825–827, Mar. 2023. doi: 10.1109/JAS.2023.123114

Process Monitoring Based on Temporal Feature Agglomeration and Enhancement

doi: 10.1109/JAS.2023.123114
More Information
  • loading
  • [1]
    M. Nawaz, A. S. Maulud, et al., “Review of multiscale methods for process monitoring with an emphasis on applications in chemical process systems,” IEEE Access, vol. 10, pp. 49708–49724, 2022. doi: 10.1109/ACCESS.2022.3171907
    [2]
    S. A. A. Taqvi, H. Zabiri, et al., “A review on data-driven learning approaches for fault detection and diagnosis in chemical processes,” ChemBioEng Reviews, vol. 8, no. 3, pp. 239–259, 2021. doi: 10.1002/cben.202000027
    [3]
    W. Ku, R. H. Storer, et al., “Disturbance detection and isolation by dynamic principal component analysis,” Chemometrics and Intelligent Lab. Syst., vol. 30, no. 1, pp. 179–196, 1995. doi: 10.1016/0169-7439(95)00076-3
    [4]
    Y. Li, X. Xiu, et al., “Towards efficient process monitoring using spatiotemporal PCA,” IEEE Trans. Circuits Systems II: Express Briefs, vol. 70, no. 2, pp. 551–555, 2023. doi: 10.1109/TCSII.2022.3171205
    [5]
    S. Kiakojoori and K. Khorasani, “Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis,” Neural Computing and Applications, vol. 27, no. 8, pp. 2157–2192, 2016. doi: 10.1007/s00521-015-1990-0
    [6]
    M. A. Kramer and B. L. Palowitch Jr, “A rule-based approach to fault diagnosis using the signed directed graph,” AIChE J., vol. 33, no. 7, pp. 1067–1078, 1987. doi: 10.1002/aic.690330703
    [7]
    X. Zhou, T. Tian, et al., “Research on transformer fault diagnosis technology based on adaboost-decision tree and DGA,” in Proc. 16th Annual Conf. China Electrotechnical Society, 2022, pp. 1179–1189.
    [8]
    C. Dong and J. Zhou, “A new algorithm of cubic dynamic uncertain causality graph for speeding up temporal causality inference in fault diagnosis,” IEEE Trans. Reliability, 2022.
    [9]
    L. Saidi, J. B. Ali, et al., “Application of higher order spectral features and support vector machines for bearing faults classification,” ISA Trans., vol. 54, pp. 193–206, 2015. doi: 10.1016/j.isatra.2014.08.007
    [10]
    A. Vaswani, N. Shazeer, et al. “Attention is all you need,” in Proc. Advances Neural Information Processing Systems, Long Beach, USA, 2017, pp.5998–6008.
    [11]
    T. Chen, S. Kornblith, et al., “A simple framework for contrastive learning of visual representations,” in Proc. Int. Conf. Machine Learning, 2020, pp. 1597–1607.
    [12]
    P. Khosla, P. Teterwak, et al., “Supervised contrastive learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673, 2020.
    [13]
    H. Wu and J. Zhao, “Deep convolutional neural network model based chemical process fault diagnosis,” Computers &Chemical Engineering, vol. 115, pp. 185–197, 2018.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (62) PDF downloads(13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return