IEEE/CAA Journal of Automatica Sinica
Citation:  B. Q. Li, S. P. Wen, Z. Yan, G. H. Wen, and T. W. Huang, “A survey on the control Lyapunov function and control barrier function for nonlinearaffine control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 584–602, Mar. 2023. doi: 10.1109/JAS.2023.123075 
[1] 
G. J. Pappas and S. Simic, “Consistent abstractions of affine control systems,” IEEE Trans. Autom. Control, vol. 47, no. 5, pp. 745–756, May 2002. doi: 10.1109/TAC.2002.1000269

[2] 
H. G. Zhang, Y. H. Luo, and D. R. Liu, “Neuralnetworkbased nearoptimal control for a class of discretetime affine nonlinear systems with control constraints,” IEEE Trans. Neural Netw., vol. 20, no. 9, pp. 1490–1503, Sept. 2009. doi: 10.1109/TNN.2009.2027233

[3] 
N. Nakamura, H. Nakamura, Y. Yamashita, and H. Nishitani, “Homogeneous stabilization for input affine homogeneous systems,” IEEE Trans. Autom. Control, vol. 54, no. 9, pp. 2271–2275, Sept. 2009. doi: 10.1109/TAC.2009.2026865

[4] 
Y. B. Wang, J. Y. Hang, and M. L. Zhang, “Stable labelspecific features generation for multilabel learning via mixturebased clustering ensemble,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1248–1261, Jul. 2022. doi: 10.1109/JAS.2022.105518

[5] 
Y. H. Wang, X. D. Li, and S. J. Song, “Inputtostate stabilization of nonlinear impulsive delayed systems: An observerbased control approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1273–1283, Jul. 2022. doi: 10.1109/JAS.2022.105422

[6] 
W. He, Z. Yin, and C. Y. Sun, “Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1641–1651, Jul. 2017. doi: 10.1109/TCYB.2016.2554621

[7] 
S. M. KhansariZadeh and A. Billard, “Learning control Lyapunov function to ensure stability of dynamical systembased robot reaching motions,” Rob. Auton. Syst., vol. 62, no. 6, pp. 752–765, Jun. 2014. doi: 10.1016/j.robot.2014.03.001

[8] 
N. Gaby, F. M. Zhang, and X. J. Ye, “LyapunovNet: A deep neural network architecture for Lyapunov function approximation,” arXiv preprint arXiv: 2109.13359, 2021.

[9] 
C. E. Ren, J. A. Zhang, and Y. Guan, “Prescribed performance bipartite consensus control for stochastic nonlinear multiagent systems under eventtriggered strategy,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 468–482, 2023.

[10] 
J. J. Fu, G. H. Wen, X. H. Yu, and Z. G. Wu, “Distributed formation navigation of constrained secondorder multiagent systems with collision avoidance and connectivity maintenance,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2149–2162, Apr. 2022. doi: 10.1109/TCYB.2020.3000264

[11] 
Y. Z. Lu, X. W. Dong, Q. D. Li, J. H. Lü, and Z. Ren, “Timevarying group formationcontainment tracking control for general linear multiagent systems with unknown inputs,” IEEE Trans. Cybern., vol. 52, no. 10, pp. 11055–11067, Oct. 2022. doi: 10.1109/TCYB.2021.3058086

[12] 
S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worstcase and stochastic safety verification using barrier certificates,” IEEE Trans. Autom. Control, vol. 52, no. 8, pp. 1415–1428, Aug. 2007. doi: 10.1109/TAC.2007.902736

[13] 
S. Kousik, S. Vaskov, F. Bu, M. JohnsonRoberson, and R. Vasudevan, “Bridging the gap between safety and realtime performance in recedinghorizon trajectory design for mobile robots,” Int. J. Rob. Res., vol. 39, no. 12, pp. 1419–1469, Oct. 2020. doi: 10.1177/0278364920943266

[14] 
J. Zeng, B. K. Zhang, and K. Sreenath, “Safetycritical model predictive control with discretetime control barrier function,” in Proc. American Control Conf., New Orleans, USA, 2021, pp. 3882–3889.

[15] 
A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimization,” SIAM Rev., vol. 44, no. 4, pp. 525–597, Dec. 2002. doi: 10.1137/S0036144502414942

[16] 
P. Wieland and F. Allgöwer, “Constructive safety using control barrier functions,” IFAC Proc. Vol., vol. 40, no. 12, pp. 462–467, Aug. 2007. doi: 10.3182/200708223ZA2920.00076

[17] 
S. Prajna and A. Rantzer, “Convex programs for temporal verification of nonlinear dynamical systems,” SIAM J. Control Optim., vol. 46, no. 3, pp. 999–1021, Jun. 2007. doi: 10.1137/050645178

[18] 
R. Wisniewski and C. Sloth, “Converse barrier certificate theorems,” IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1356–1361, May 2016. doi: 10.1109/TAC.2015.2476155

[19] 
M. Hajiahmadi, B. De Schutter, and H. Hellendoorn, “Design of stabilizing switching laws for mixed switched affine systems,” IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1676–1681, Jun. 2016. doi: 10.1109/TAC.2015.2480216

[20] 
Z. H. Peng, D. Wang, T. S. Li, and M. Han, “Outputfeedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2527–2535, Jun. 2020. doi: 10.1109/TCYB.2019.2914717

[21] 
E. G. Gilbert and I. Kolmanovsky, “A generalized reference governor for nonlinear systems,” in Proc. 40th IEEE Conf. Decision and Control, Orlando, USA, 2001, pp. 4222–4227.

[22] 
J. Wolff and M. Buss, “Invariance control design for constrained nonlinear systems,” IFAC Proc. Vol., vol. 38, no. 1, pp. 37–42, Jul. 2005.

[23] 
K. B. Ngo, R. Mahony, and Z. P. Jiang, “Integrator backstepping using barrier functions for systems with multiple state constraints,” in Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, 2005, pp. 8306–8312.

[24] 
K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the control of outputconstrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, Apr. 2009. doi: 10.1016/j.automatica.2008.11.017

[25] 
M. Z. Romdlony and B. Jayawardhana, “Uniting control Lyapunov and control barrier functions,” in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014, pp. 2293–2298.

[26] 
R. A. Freeman and J. A. Primbs, “Control Lyapunov functions: New ideas from an old source,” in Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, 1996, pp. 3926v3931.

[27] 
A. D. Ames, K. Galloway, and J. W. Grizzle, “Control Lyapunov functions and hybrid zero dynamics,” in Proc. IEEE 51st IEEE Conf. Decision and Control, Maui, USA, 2012, pp. 6837–6842.

[28] 
A. D. Ames and M. Powell, “Towards the unification of locomotion and manipulation through control Lyapunov functions and quadratic programs,” in Control of CyberPhysical Systems, D. C. Tarraf, Ed. Heidelberg, Germany: Springer, 2013, pp. 219–240.

[29] 
A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 876–891, Apr. 2014. doi: 10.1109/TAC.2014.2299335

[30] 
R. A. Freeman and P. V. Kokotovic, “Inverse optimality in robust stabilization,” SIAM J. Control Optim., vol. 34, no. 4, pp. 1365–1391, Jul. 1996. doi: 10.1137/S0363012993258732

[31] 
T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D. Ames, “Modelfree safetycritical control for robotic systems,” IEEE Rob. Autom. Lett., vol. 7, no. 2, pp. 944–951, Apr. 2022. doi: 10.1109/LRA.2021.3135569

[32] 
A. D. Ames, X. R. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017. doi: 10.1109/TAC.2016.2638961

[33] 
S. K. Sahoo, S. Dasgupta, S. K. Panda, and J. X. Xu, “A Lyapunov functionbased robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 555–564, Feb. 2012. doi: 10.1109/TPEL.2011.2132740

[34] 
A. Alan, A. J. Taylor, C. R. He, G. Orosz, and A. D. Ames, “Safe controller synthesis with tunable inputtostate safe control barrier functions,” IEEE Control Syst. Lett., vol. 6, pp. 908–913, 2022. doi: 10.1109/LCSYS.2021.3087443

[35] 
P. Zhao, Y. B. Mao, C. Y. Tao, N. Hovakimyan, and X. F. Wang, “Adaptive robust quadratic programs using control Lyapunov and barrier functions,” in Proc. 59th IEEE Conf. Decision and Control, Jeju, Korea (South), 2020, pp. 3353v3358.

[36] 
R. Takano and M. Yamakita, “Robust constrained stabilization control using control Lyapunov and control barrier function in the presence of measurement noises,” in Proc. IEEE Conf. Control Technology and Applications, Copenhagen, Denmark, 2018, pp. 300–305.

[37] 
A. Isidori, Nonlinear Control Systems: An Introduction. Berlin, Germany: Springer, 1985.

[38] 
I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Trans. Autom. Control, vol. 36, no. 11, pp. 1241–1253, Nov. 1991. doi: 10.1109/9.100933

[39] 
M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 447–451, Mar. 1996. doi: 10.1109/9.486648

[40] 
B. Yao and M. Tomizuka, “Adaptive robust control of SISO nonlinear systems in a semistrict feedback form,” Automatica, vol. 33, no. 5, pp. 893–900, May 1997. doi: 10.1016/S00051098(96)002221

[41] 
T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network control for strictfeedback nonlinear systems using backstepping design,” Automatica, vol. 36, no. 12, pp. 1835–1846, Dec. 2000. doi: 10.1016/S00051098(00)001163

[42] 
Y. X. Li and G. H. Yang, “Modelbased adaptive eventtriggered control of strictfeedback nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1033–1045, Apr. 2018. doi: 10.1109/TNNLS.2017.2650238

[43] 
D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth systems,” IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1910–1914, Sept. 1994. doi: 10.1109/9.317122

[44] 
A. Shariati and Q. Zhao, “Robust leaderfollowing output regulation of uncertain multiagent systems with timevarying delay,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 807–817, Jul. 2018. doi: 10.1109/JAS.2018.7511141

[45] 
H. F. Min, S. Y. Xu, B. Y. Zhang, Q. Ma, and D. M. Yuan, “Fixedtime Lyapunov criteria and statefeedback controller design for stochastic nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1005–1014, Jun. 2022. doi: 10.1109/JAS.2022.105539

[46] 
Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Anal. Theory Methods Appl., vol. 7, no. 11, pp. 1163–1173, Jan. 1983. doi: 10.1016/0362546X(83)900494

[47] 
E. D. Sontag, “A ‘universal’ construction of artstein’s theorem on nonlinear stabilization,” Syst Control Lett., vol. 13, no. 2, pp. 117–123, Aug. 1989. doi: 10.1016/01676911(89)900285

[48] 
Y. Q. He and J. D. Han, “Generalized point wise minnorm control based on control Lyapunov functions,” in Proc. Chinese Control Conf., Zhangjiajie, China, 2007, pp. 404–408.

[49] 
R. Furqon, Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, “An SOSbased control Lyapunov function design for polynomial fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 775–787, Aug. 2017. doi: 10.1109/TFUZZ.2016.2578339

[50] 
S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. New York, USA: Springer, 2013.

[51] 
G. F. Wu and K. Sreenath, “Safetycritical and constrained geometric control synthesis using control Lyapunov and control barrier functions for systems evolving on manifolds,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 2038–2044.

[52] 
S. C. Hsu, X. R. Xu, and A. D. Ames, “Control barrier function based quadratic programs with application to bipedal robotic walking,” in Proc. American Control Conf., Chicago, USA, 2015, pp. 4542–4548.

[53] 
Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relativedegree safetycritical constraints,” in Proc. American Control Conf., Boston, USA, 2016, pp. 322–328.

[54] 
T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames, “Towards a framework for realizable safety critical control through active set invariance,” in Proc. ACM/IEEE 9th Int. Conf. CyberPhysical Systems, Porto, Portugal, 2018, pp. 98–106.

[55] 
B. J. Morris, M. J. Powell, and A. D. Ames, “Continuity and smoothness properties of nonlinear optimizationbased feedback controllers,” in Proc. 54th IEEE Conf. Decision and Control, Osaka, Japan, 2015, pp. 151–158.

[56] 
M. Jankovic, “Robust control barrier functions for constrained stabilization of nonlinear systems,” Automatica, vol. 96, pp. 359–367, Oct. 2018. doi: 10.1016/j.automatica.2018.07.004

[57] 
K. Sreenath, H. W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on mabel,” Int. J. Rob. Res., vol. 30, no. 9, pp. 1170–1193, Aug. 2011. doi: 10.1177/0278364910379882

[58] 
S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Simtoreal via simtosim: Dataefficient robotic grasping via randomizedtocanonical adaptation networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 12619–12629.

[59] 
S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010. doi: 10.1109/TKDE.2009.191

[60] 
Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and D. Fox, “Closing the simtoreal loop: Adapting simulation randomization with real world experience,” in Proc. Int. Conf. Robotics and Automation, Montreal, Canada, 2019, pp. 8973–8979.

[61] 
E. Valassakis, Z. H. Ding, and E. Johns, “Crossing the gap: A deep dive into zeroshot simtoreal transfer for dynamics,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, USA, 2020, pp. 5372–5379.

[62] 
D. Rastogi, I. Koryakovskiy, and J. Kober, “Sampleefficient reinforcement learning via difference models,” in Proc. 3rd Machine Learning in Planning and Control of Robot Motion Workshop at ICRA, 2018.

[63] 
Q. Nguyen and K. Sreenath, “Optimal robust control for constrained nonlinear hybrid systems with application to bipedal locomotion,” in Proc. American Control Conf., Boston, USA, 2016, pp. 4807–4813.

[64] 
N. Hovakimyan and C. Y. Cao, ${\cal{L}}_1 $ Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2010.

[65] 
X. F. Wang, L. X. Yang, Y. Sun, and K. Deng, “Adaptive model predictive control of nonlinear systems with statedependent uncertainties,” Int. J. Robust Nonlinear Control, vol. 27, no. 17, pp. 4138–4153, Nov. 2017. doi: 10.1002/rnc.3787

[66] 
E. D. Sontag and Y. Wang, “On characterizations of inputtostate stability with respect to compact sets,” in Nonlinear Control Systems Design 1995, A. J. Krener and D. Q. Mayne, Eds. Amsterdam, Netherlands: Elsevier, 1995, pp. 203–208.

[67] 
S. Kolathaya and A. D. Ames, “Inputtostate safety with control barrier functions,” IEEE Control Syst. Lett., vol. 3, no. 1, pp. 108–113, Jan. 2019. doi: 10.1109/LCSYS.2018.2853698

[68] 
J. Choi, F. Castañeda, C. J. Tomlin, and K. Sreenath, “Reinforcement learning for safetycritical control under model uncertainty, using control Lyapunov functions and control barrier functions,” in Proc. Robotics: Science and Systems, Corvalis, Oregon, USA, July 2020.

[69] 
A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. D. Yue, and A. D. Ames, “Episodic learning with control Lyapunov functions for uncertain robotic systems,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Macau, China, 2019, pp. 6878–6884.

[70] 
L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A DistributionFree Theory of Nonparametric Regression. New York, USA: Springer, 2002.

[71] 
A. Taylor, A. Singletary, Y. S. Yue, and A. Ames, “Learning for safetycritical control with control barrier functions,” in Proc. 2nd Confer. Learning for Dynamics and Control, Delft, Netherlands, 2020, pp. 708–717.

[72] 
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. Cambridge, USA: MIT Press, 2006.

[73] 
J. Umlauft, L. Pöhler, and S. Hirche, “An uncertaintybased control Lyapunov approach for controlaffine systems modeled by Gaussian process,” IEEE Control Syst. Lett., vol. 2, no. 3, pp. 483–488, Jul. 2018. doi: 10.1109/LCSYS.2018.2841961

[74] 
F. Castaneda, J. J. Choi, B. K. Zhang, C. J. Tomlin, and K. Sreenath, “Pointwise feasibility of Gaussian processbased safetycritical control under model uncertainty,” in Proc. 60th IEEE Conf. Decision and Control, Austin, USA, 2021. pp. 6762–6769.

[75] 
R. Cheng, M. J. Khojasteh, A. D. Ames, and J. W. Burdick, “Safe multiagent interaction through robust control barrier functions with learned uncertainties,” in Proc. 59th IEEE Conf. Decision and Control, Jeju, Korea (South), 2020, pp. 777–783.

[76] 
M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control using control barrier functions,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Daejeon, Korea (South), 2016, pp. 279–285.

[77] 
W. ShawCortez, D. Oetomo, C. Manzie, and P. Choong, “Tactilebased blind grasping: A discretetime object manipulation controller for robotic hands,” IEEE Rob. Autom. Lett., vol. 3, no. 2, pp. 1064–1071, Apr. 2018. doi: 10.1109/LRA.2018.2794612

[78] 
W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier functions for mechanical systems: Theory and application to robotic grasping,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 530–545, Mar. 2021. doi: 10.1109/TCST.2019.2952317

[79] 
D. Seto and L. Sha, “A case study on analytical analysis of the inverted pendulum realtime control system,” CarnegieMellon Univ Pittsburgh PA Software Engineering Inst, Tech. Rep., 1999.

[80] 
D. J. Block, K. J. Åström, and M. W. Spong, The Reaction Wheel Pendulum. Cham, Germany: Springer, 2007, pp. 1–105.

[81] 
M. W. Spong, P. Corke, and R. Lozano, “Nonlinear control of the reaction wheel pendulum,” Automatica, vol. 37, no. 11, pp. 1845–1851, Nov. 2001. doi: 10.1016/S00051098(01)001455

[82] 
J. Long, W. Wang, J. S. Huang, J. H. Lü, and K. X. Liu, “Adaptive leaderless consensus for uncertain highorder nonlinear multiagent systems with eventtriggered communication,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 11, pp. 7101–7111, Nov. 2022. doi: 10.1109/TSMC.2022.3150931

[83] 
B. Q. Li, G. G. Wen, Z. X. Peng, T. W. Huang, and A. Rahmani, “Fully distributed consensus tracking of stochastic nonlinear multiagent systems with Markovian switching topologies via intermittent control,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 5, pp. 3200–3209, May 2022. doi: 10.1109/TSMC.2021.3063907

[84] 
L. BriñóArranz, A. Seuret, and C. CanudasdeWit, “Cooperative control design for timevarying formations of multiagent systems,” IEEE Trans. Autom. Control, vol. 59, no. 8, pp. 2283–2288, Aug. 2014. doi: 10.1109/TAC.2014.2303213

[85] 
H. J. Ma, G. H. Yang, and T. W. Chen, “Eventtriggered optimal dynamic formation of heterogeneous affine nonlinear multiagent systems,” IEEE Trans. Autom. Control, vol. 66, no. 2, pp. 497–512, Feb. 2021. doi: 10.1109/TAC.2020.2983108

[86] 
W. Jiang, G. G. Wen, Z. X. Peng, T. W. Huang, and A. Rahmani, “Fully distributed formationcontainment control of heterogeneous linear multiagent systems,” IEEE Trans. Autom. Control, vol. 64, no. 9, pp. 3889–3896, Sept. 2019. doi: 10.1109/TAC.2018.2887409

[87] 
Z. Zhang and M. Y. Chow, “Incremental cost consensus algorithm in a smart grid environment,” in Proc. IEEE Power and Energy Society General Meeting, Detroit, USA, 2011, pp. 1–6.

[88] 
T. Yang, D. Wu, Y. N. Sun, and J. M. Lian, “Minimumtime consensusbased approach for power system applications,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1318–1328, Feb. 2016. doi: 10.1109/TIE.2015.2504050

[89] 
S. P. Yang, S. C. Tan, and J. X. Xu, “Consensus based approach for economic dispatch problem in a smart grid,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4416–4426, Nov. 2013. doi: 10.1109/TPWRS.2013.2271640

[90] 
M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, “Robot ecology: Constraintbased control design for long duration autonomy,” Annu. Rev. Control, vol. 46, pp. 1–7, Sept. 2018. doi: 10.1016/j.arcontrol.2018.09.006

[91] 
G. Notomista, S. F. Ruf, and M. Egerstedt, “Persistification of robotic tasks using control barrier functions,” IEEE Rob. Autom. Lett., vol. 3, no. 2, pp. 758–763, Apr. 2018. doi: 10.1109/LRA.2018.2789848

[92] 
P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth barrier functions with applications to multirobot systems,” IEEE Control Syst. Lett., vol. 1, no. 2, pp. 310–315, Oct. 2017. doi: 10.1109/LCSYS.2017.2710943

[93] 
J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Trans. Rob. Autom., vol. 20, no. 2, pp. 243–255, Apr. 2004. doi: 10.1109/TRA.2004.824698

[94] 
G. Notomista and M. Egerstedt, “Constraintdriven coordinated control of multirobot systems,” in Proc. American Control Conf., Philadelphia, USA, 2019, pp. 1990–1996.

[95] 
L. Liu, P. Wang, B. Zhang, and W. Wei, “Coordinated control method of virtually coupled train formation based on multi agent system,” in Proc. 2nd Int. Conf. Smart Vehicular Technology, Transportation, Communication and Applications, Mount Emei, China, 2018, pp. 225–233.

[96] 
T. Beckers, S. Hirche, and L. Colombo, “Safe online learningbased formation control of multiagent systems with Gaussian processes,” arXiv preprint arXiv: 2104.00130, 2021.

[97] 
B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multirobot systems,” Int. J. Rob. Res., vol. 23, no. 9, pp. 939–954, Sept. 2004. doi: 10.1177/0278364904045564

[98] 
S. Srinivasan and N. K. Jha, “Safety and reliability driven task allocation in distributed systems,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 3, pp. 238–251, Mar. 1999. doi: 10.1109/71.755824

[99] 
Y. Emam, G. Notomista, P. Glotfelter, and M. Egerstedt, “Datadriven adaptive task allocation for heterogeneous multirobot teams using robust control barrier functions,” in Proc. IEEE Int. Conf. Robotics and Automation, Xi’an, China, 2021, pp. 9124–9130.

[100] 
D. Tihanyi, Y. M. Lu, O. Karaca, and M. Kamgarpour, “Multirobot task allocation for safe planning against stochastic hazard dynamics,” arXiv preprint arXiv: 2103.01840, 2021.

[101] 
R. Iden and S. A. Shappell, “A human error analysis of U.S. fatal highway crashes 1990–2004,” Proc. Human Factors Ergon. Soc. Annu. Meet., vol. 50, no. 17, pp. 2000–2003, Oct. 2006. doi: 10.1177/154193120605001761

[102] 
K. C. Dey, L. Yan, X. J. Wang, Y. Wang, H. Y. Shen, M. Chowdhury, L. Yu, C. X. Qiu, and V. Soundararaj, “A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC),” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 491–509, Feb. 2015.

[103] 
P. A. Ioannou and C. C. Chien, “Autonomous intelligent cruise control,” IEEE Trans. Veh. Technol., vol. 42, no. 4, pp. 657–672, Nov. 1993. doi: 10.1109/25.260745

[104] 
A. Shaout and M. A. Jarrah, “Cruise control technology review,” Comput. Electr. Eng., vol. 23, no. 4, pp. 259–271, Jul. 1997. doi: 10.1016/S00457906(97)00013X

[105] 
S. E. Shladover, C. Nowakowski, X. Y. Lu, and R. Ferlis, “Cooperative adaptive cruise control: Definitions and operating concepts,” Transp. Res. Rec., vol. 2489, no. 1, pp. 145–152, Jan. 2015. doi: 10.3141/248917

[106] 
J. Ploeg, A. F. A. Serrarens, and G. J. Heijenk, “Connect & drive: Design and evaluation of cooperative adaptive cruise control for congestion reduction,” J. Mod. Transp., vol. 19, no. 3, pp. 207–213, Sept. 2011. doi: 10.1007/BF03325760

[107] 
S. E. Shladover, D. Y. Su, and X. Y. Lu, “Impacts of cooperative adaptive cruise control on freeway traffic flow,” Transp. Res. Rec., vol. 2324, no. 1, pp. 63–70, Jan. 2012. doi: 10.3141/232408

[108] 
V. L. Bageshwar, W. L. Garrard, and R. Rajamani, “Model predictive control of transitional maneuvers for adaptive cruise control vehicles,” IEEE Trans. Veh. Technol., vol. 53, no. 5, pp. 1573–1585, Sept. 2004. doi: 10.1109/TVT.2004.833625

[109] 
W. H. Chen, S. H. Tsai, and H. I. Lin, “Fault section estimation for power networks using logic causeeffect models,” IEEE Trans. Power Delivery, vol. 26, no. 2, pp. 963–971, Apr. 2011. doi: 10.1109/TPWRD.2010.2093585

[110] 
A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014, pp. 6271–6278.

[111] 
C. Y. Liang and H. Peng, “String stability analysis of adaptive cruise controlled vehicles,” JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf., vol. 43, no. 3, pp. 671–677, Sept. 2000.

[112] 
K. Vogel, “A comparison of headway and time to collision as safety indicators,” Accid. Anal. Prev., vol. 35, no. 3, pp. 427–433, May 2003. doi: 10.1016/S00014575(02)000222

[113] 
A. BenineNeto, S. Scalzi, S. Mammar, and M. Netto, “Dynamic controller for lane keeping and obstacle avoidance assistance system,” in Proc. 13th Int. IEEE Conf. Intelligent Transportation Systems, Funchal, Portugal, 2010, pp. 1363–1368.

[114] 
M. Oya and Q. Wang, “Adaptive lane keeping controller for fourwheelsteering vehicles,” in Proc. IEEE Int. Conf. Control and Automation, Guangzhou, China, 2007, pp. 1942–1947.

[115] 
P. Raksincharoensak, M. Nagai, and M. Shino, “Lane keeping control strategy with direct yaw moment control input by considering dynamics of electric vehicle,” Veh. Syst. Dyn., vol. 44, no. sup1, pp. 192–201, Jan. 2006. doi: 10.1080/00423110600870006

[116] 
Y. Xu, B. Y. Chen, X. Shan, W. H. Jia, Z. F. Lu, and G. Xu, “Model predictive control for lane keeping system in autonomous vehicle,” in Proc. 7th Int. Conf. Power Electronics Systems and ApplicationsSmart Mobility, Power Transfer & Security, Hong Kong, China, 2017, pp. 1–5.

[117] 
X. R. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness guarantees for the composition of lane keeping and adaptive cruise control,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1216–1229, Jul. 2018. doi: 10.1109/TASE.2017.2760863

[118] 
X. R. Xu, T. Waters, D. Pickem, P. Glotfelter, M. Egerstedt, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Realizing simultaneous lane keeping and adaptive speed regulation on accessible mobile robot testbeds,” in Proc. IEEE Conf. Control Technology and Applications, Maui, USA, 2017, pp. 1769–1775.

[119] 
W. S. Ng, B. L. Davies, R. D. Hibberd, and A. G. Timoney, “Robotic surgery,” IEEE Eng. Med. Biol. Mag., vol. 12, no. 1, pp. 120–125, Mar. 1993. doi: 10.1109/51.195948

[120] 
M. Zhang, X. Y. Geng, J. Bruce, K. Caluwaerts, M. Vespignani, V. SunSpiral, P. Abbeel, and S. Levine, “Deep reinforcement learning for tensegrity robot locomotion,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, 2017, pp. 634–641.

[121] 
D. B. Zhao, Y. R. Chen, and L. Lv, “Deep reinforcement learning with visual attention for vehicle classification,” IEEE Trans. Cognit. Dev. Syst., vol. 9, no. 4, pp. 356–367, Dec. 2017. doi: 10.1109/TCDS.2016.2614675

[122] 
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Humanlevel control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. doi: 10.1038/nature14236

[123] 
E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for modelbased control,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, VilamouraAlgarve, Portugal, 2012, pp. 5026–5033.

[124] 
O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y. Wang, T. Pfaff, Y. H. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in StarCraft II using multiagent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov. 2019. doi: 10.1038/s415860191724z

[125] 
K. Sreenath, T. Lee, and V. Kumar, “Geometric control and differential flatness of a quadrotor UAV with a cablesuspended load,” in Proc. 52nd IEEE Conf. Decision and Control, Firenze, Italy, 2013, pp. 2269–2274.

[126] 
U. Rosolia, S. De Bruyne, and A. G. Alleyne, “Autonomous vehicle control: A nonconvex approach for obstacle avoidance,” IEEE Trans. Control Syst. Technol., vol. 25, no. 2, pp. 469–484, Mar. 2017. doi: 10.1109/TCST.2016.2569468

[127] 
I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A timedependent HamiltonJacobi formulation of reachable sets for continuous dynamic games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957, Jul. 2005. doi: 10.1109/TAC.2005.851439

[128] 
Y. X. Chen, E. H. Peng, and J. Grizzle, “Obstacle avoidance for lowspeed autonomous vehicles with barrier function,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 194–206, Jan. 2018. doi: 10.1109/TCST.2017.2654063

[129] 
Y. X. Chen, H. E. Peng, and J. W. Grizzle, “Validating noncooperative control designs through a Lyapunov approach,” IEEE Trans. Control Syst. Technol., vol. 27, no. 2, pp. 527–539, Mar. 2019. doi: 10.1109/TCST.2017.2783900

[130] 
Y. X. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoidance for multirobot operations with limited actuation: A control barrier function approach,” IEEE Control Syst. Lett., vol. 5, no. 1, pp. 127–132, Jan. 2021. doi: 10.1109/LCSYS.2020.3000748

[131] 
M. Khan and A. Chatterjee, “Gaussian control barrier functions: Safe learning and control,” in Proc. 59th IEEE Conf. Decision and Control, Jeju, Korea (South), 2020, pp. 3316–3322.

[132] 
V. Dhiman, M. J. Khojasteh, M. Franceschetti, and N. Atanasov, “Control barriers in Bayesian learning of system dynamics,” IEEE Trans. Autom. Control, DOI: 10.1109/TAC.2021.3137059
