A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 7
Jul.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. L. Liu, Z. B. Wei, C. H. Zhang, Y. L. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139–1165, Jul. 2022. doi: 10.1109/JAS.2022.105599
Citation: K. L. Liu, Z. B. Wei, C. H. Zhang, Y. L. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139–1165, Jul. 2022. doi: 10.1109/JAS.2022.105599

Towards Long Lifetime Battery: AI-Based Manufacturing and Management

doi: 10.1109/JAS.2022.105599
Funds:  This work was supported by the UK HVM Catapult project (8248 CORE), the National Natural Science Foundation of China (52072038, 62122041)
More Information
  • Technologies that accelerate the delivery of reliable battery-based energy storage will not only contribute to decarbonization such as transportation electrification, smart grid, but also strengthen the battery supply chain. As battery inevitably ages with time, losing its capacity to store charge and deliver it efficiently. This directly affects battery safety and efficiency, making related health management necessary. Recent advancements in automation science and engineering raised interest in AI-based solutions to prolong battery lifetime from both manufacturing and management perspectives. This paper aims at presenting a critical review of the state-of-the-art AI-based manufacturing and management strategies towards long lifetime battery. First, AI-based battery manufacturing and smart battery to benefit battery health are showcased. Then the most adopted AI solutions for battery life diagnostic including state-of-health estimation and ageing prediction are reviewed with a discussion of their advantages and drawbacks. Efforts through designing suitable AI solutions to enhance battery longevity are also presented. Finally, the main challenges involved and potential strategies in this field are suggested. This work will inform insights into the feasible, advanced AI for the health-conscious manufacturing, control and optimization of battery on different technology readiness levels.

     

  • loading
  • [1]
    T. Y. Meng, Z. L. Lin, and Y. A. Shamash, “Distributed cooperative control of battery energy storage systems in DC microgrids,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 606–616, Mar. 2021. doi: 10.1109/JAS.2021.1003874
    [2]
    Y. J. Wang, J. Q. Tian, Z. D. Sun, L. Wang, R. L. Xu, M. C. Li, and Z. H. Chen, “A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems,” Renew. Sustain. Energy Rev., vol. 131, p. 110015, Oct. 2020.
    [3]
    Y. Ma, B. S. Li, G. Y. Li, J. X. Zhang, and H. Chen, “A nonlinear observer approach of SOC estimation based on hysteresis model for lithium-ion battery,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 195–204, Apr. 2017. doi: 10.1109/JAS.2017.7510502
    [4]
    K. L. Liu, K. Li, Q. Peng, and C. Zhang, “A brief review on key technologies in the battery management system of electric vehicles,” Front. Mech. Eng., vol. 14, no. 1, pp. 47–64, Mar. 2019. doi: 10.1007/s11465-018-0516-8
    [5]
    X. Sui, S. He, S. B. Vilsen, J. H. Meng, R. Teodorescu, and D. I. Stroe, “A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery,” Appl. Energy, vol. 300, p. 117346, Oct. 2021.
    [6]
    A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, and K. Droeder, “Current status and challenges for automotive battery production technologies,” Nat. Energy, vol. 3, no. 4, pp. 290–300, Apr. 2018. doi: 10.1038/s41560-018-0130-3
    [7]
    A. Hoekstra, “The underestimated potential of battery electric vehicles to reduce emissions,” Joule, vol. 3, no. 6, pp. 1412–1414, Jun. 2019. doi: 10.1016/j.joule.2019.06.002
    [8]
    E. Ayerbe, M. Berecibar, S. Clark, A. A. Franco, and J. Ruhland, “Digitalization of battery manufacturing: Current Status, challenges, and opportunities,” Adv. Energy Mater., DOI: 10.1002/aenm.202102696
    [9]
    Z. B. Wei, J. Y. Zhao, H. W. He, G. L. Ding, H. Y. Cui, and L. C. Liu, “Future smart battery and management: Advanced sensing from external to embedded multi-dimensional measurement,” J. Power Sources, vol. 489, p. 229462, Mar. 2021.
    [10]
    J. Q. Huang, L. Albero Blanquer, J. Bonefacino, E. R. Logan, D. Alves Dalla Corte, C. Delacourt, B. M. Gallant, S. T. Boles, J. R. Dahn, H. Y. Tam, and J. M. Tarascon, “Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors,” Nat. Energy, vol. 5, no. 9, pp. 674–683, Aug. 2020. doi: 10.1038/s41560-020-0665-y
    [11]
    A. Ganguli, B. Saha, A. Raghavan, P. Kiesel, K. Arakaki, A. Schuh, J. Schwartz, A. Hegyi, L. W. Sommer, A. Lochbaum, S. Sahu, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: Internal cell signals and utility for state estimation,” J. Power Sources, vol. 341, pp. 474–482, Feb. 2017. doi: 10.1016/j.jpowsour.2016.11.103
    [12]
    R. Di Fonso, X. Sui, A. B. Acharya, R. Teodorescu, and C. Cecati, “Multidimensional machine learning balancing in smart battery Packs,” in Proc. 47th Annu. Conf. IEEE Industrial Electronics Society, Toronto, Canada, 2021, pp. 1−6.
    [13]
    Y. Li, K. L. Liu, A. M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, and H. E. Hoster, “Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review,” Renew. Sustainable Energy Rev., vol. 113, p. 109254, Oct. 2019.
    [14]
    A. Tomaszewska, Z. Y. Chu, X. N. Feng, S. O’kane, X. H. Liu, J. Y. Chen, C. Z. Ji, E. Endler, R. H. Li, L. S. Liu, Y. L. Li, S. Q. Zheng, S. Vetterlein, M. Gao, J. Y. Du, M. Parkes, M. G. Ouyang, M. Marinescu, G. Offer, and B. Wu, “Lithium-ion battery fast charging: A review,” eTransportation, vol. 1, p. 100011, Aug. 2019.
    [15]
    X. S. Hu, L. Xu, X. K. Lin, and M. Pecht, “Battery lifetime prognostics,” Joule, vol. 4, no. 2, pp. 310–346, Feb. 2020. doi: 10.1016/j.joule.2019.11.018
    [16]
    M. Lucu, E. Martinez-Laserna, I. Gandiaga, and H. Camblong, “A critical review on self-adaptive Li-ion battery ageing models,” J. Power Sources, vol. 401, pp. 85–101, Oct. 2018. doi: 10.1016/j.jpowsour.2018.08.064
    [17]
    D. Küpper, K. Kuhlmann, S. Wolf, C. Pieper, G. Xu, and J. Ahmad, “The future of battery production for electric vehicles,” Boston Consulting Group, Boston, USA, Sep. 2018.
    [18]
    Y. S. Zhang, N. E. Courtier, Z. Y. Zhang, K. L. Liu, J. J. Bailey, A. M. Boyce, G. Richardson, P. R. Shearing, E. Kendrick, and D. J. L. Brett, “A review of lithium-ion battery electrode drying: Mechanisms and metrology,” Adv. Energy Mater., vol. 12, no. 2. p. 2102233, Jan. 2022.
    [19]
    A. Turetskyy, J. Wessel, C. Herrmann, and S. Thiede, “Data-driven cyber-physical system for quality gates in lithium-ion battery cell manufacturing,” Procedia CIRP, vol. 93, pp. 168–173, Sep. 2020. doi: 10.1016/j.procir.2020.03.077
    [20]
    K. L. Liu, Z. L. Yang, H. K. Wang, and K. Li, “Classifications of lithium-ion battery electrode property based on support vector machine with various kernels,” in Proc. 7th Int. Conf. Life System Modeling and Simulation, LSMS 2021 and 7th Int. Conf. Intelligent Computing for Sustainable Energy and Environment, Hangzhou, China, 2021, pp. 23−34.
    [21]
    R. P. Cunha, T. Lombardo, E. N. Primo, and A. A. Franco, “Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies,” Batter. Supercaps, vol. 3, no. 1, pp. 60–67, Jan. 2020. doi: 10.1002/batt.201900135
    [22]
    Y. T. Chen, M. Duquesnoy, D. H. S. Tan, J. M. Doux, H. D. Yang, G. Deysher, P. Ridley, A. A. Franco, Y. S. Meng, and Z. Chen, “Fabrication of high-quality thin solid-state electrolyte films assisted by machine learning,” ACS Energy Lett., vol. 6, no. 4, pp. 1639–1648, Apr. 2021.
    [23]
    J. Schnell, C. Nentwich, F. Endres, A. Kollenda, F. Distel, T. Knoche, and G. Reinhart, “Data mining in lithium-ion battery cell production,” J. Power Sources, vol. 413, pp. 360–366, Feb. 2019. doi: 10.1016/j.jpowsour.2018.12.062
    [24]
    S. Thiede, A. Turetskyy, T. Loellhoeffel, A. Kwade, S. Kara, and C. Herrmann, “Machine learning approach for systematic analysis of energy efficiency potentials in manufacturing processes: A case of battery production,” CIRP Ann., vol. 69, no. 1, pp. 21–24, May 2020. doi: 10.1016/j.cirp.2020.04.090
    [25]
    O. Rynne, M. Dubarry, C. Molson, E. Nicolas, D. Lepage, A. Prébé, D. Aymé-Perrot, D. Rochefort, and M. Dollé, “Exploiting materials to their full potential, a Li-ion battery electrode formulation optimization study,” ACS Appl. Energy Mater., vol. 3, no. 3, pp. 2935–2948, Mar. 2020. doi: 10.1021/acsaem.0c00015
    [26]
    K. L. Liu, X. S. Hu, H. Y. Zhou, L. Tong, W. D. Widanage, and J. Marco, “Feature analyses and modeling of lithium-ion battery manufacturing based on random forest classification,” IEEE/ASME Trans. Mechatron., vol. 26, no. 6, pp. 2944–2955, Dec. 2021. doi: 10.1109/TMECH.2020.3049046
    [27]
    K. L. Liu, X. S. Hu, J. H. Meng, J. M. Guerrero, and R. Teodorescu, “RUBoost-based ensemble machine learning for electrode quality classification in Li-ion battery manufacturing,” IEEE/ASME Trans. Mechatron., 2021. DOI: 10.1109/TMECH.2021.3115997
    [28]
    C. Kern, Machine Learning Interpretation Tools. SAGE Research Methods Foundations, 2020.
    [29]
    T. Kornas, E. Knak, R. Daub, U. Bührer, C. Lienemann, H. Heimes, A. Kampker, S. Thiede, and C. Herrmann, “A multivariate KPI-based method for quality assurance in lithium-ion-battery production,” Procedia CIRP, vol. 81, pp. 75–80, Jan. 2019. doi: 10.1016/j.procir.2019.03.014
    [30]
    S. Thiede, A. Turetskyy, A. Kwade, S. Kara, and C. Herrmann, “Data mining in battery production chains towards multi-criterial quality prediction,” CIRP Ann., vol. 68, no. 1, pp. 463–466, Apr. 2019. doi: 10.1016/j.cirp.2019.04.066
    [31]
    K. L. Liu, Z. B. Wei, Z. L. Yang, and K. Li, “Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach,” J. Clean. Prod., vol. 289, p. 125159, Mar. 2021.
    [32]
    M. Duquesnoy, T. Lombardo, M. Chouchane, E. N. Primo, and A. A. Franco, “Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning,” J. Power Sources, vol. 480, Article No. 229103, Dec. 2020. doi: 10.1016/j.jpowsour.2020.229103
    [33]
    Z. B. Wei, J. Hu, Y. Li, H. W. He, W. H. Li, and D. U. Sauer, “Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries,” Appl. Energy, vol. 307, p. 118246, Feb. 2022.
    [34]
    Z. B. Wei, J. Y. Zhao, R. Xiong, G. Z. Dong, J. Pou, and K. J. Tseng, “Online estimation of power capacity with noise effect attenuation for lithium-ion battery,” IEEE Trans. Ind. Electron., vol. 66, no. 7, pp. 5724–5735, Jul. 2019. doi: 10.1109/TIE.2018.2878122
    [35]
    P. D. Wang, X. Y. Zhang, L. Yang, X. Y. Zhang, M. Yang, H. S. Chen, and D. N. Fang, “Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process,” Extreme Mech. Lett., vol. 9, pp. 459–466, Dec. 2016. doi: 10.1016/j.eml.2016.03.013
    [36]
    S. X. Zhu, J. D. Han, H. Y. An, T. S. Pan, Y. M. Wei, W. L. Song, H. S. Chen, and D. N. Fang, “A novel embedded method for in-situ measuring internal multi-point temperatures of lithium ion batteries,” J. Power Sources, vol. 456, p. 227981, Apr. 2020.
    [37]
    C. Y. Wang, G. S. Zhang, S. H. Ge, T. Xu, Y. Ji, X. G. Yang, and Y. J. Leng, “Lithium-ion battery structure that self-heats at low temperatures,” Nature, vol. 529, no. 7587, pp. 515–518, Jan. 2016. doi: 10.1038/nature16502
    [38]
    S. J. Drake, M. Martin, D. A. Wetz, J. K. Ostanek, S. P. Miller, J. M. Heinzel, and A. Jain, “Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements,” J. Power Sources, vol. 285, pp. 266–273, Jul. 2015. doi: 10.1016/j.jpowsour.2015.03.008
    [39]
    T. Waldmann and M. Wohlfahrt-Mehrens, “In-operando measurement of temperature gradients in cylindrical lithium-ion cells during high-current discharge,” ECS Electrochem. Lett., vol. 4, no. 1, pp. A1–A3, Jan. 2015.
    [40]
    M. S. K. Mutyala, J. Z. Zhao, J. Y. Li, H. Pan, C. Yuan, and X. C. Li, “In-situ temperature measurement in lithium ion battery by transferable flexible thin film thermocouples,” J. Power Sources, vol. 260, pp. 43–49, Aug. 2014. doi: 10.1016/j.jpowsour.2014.03.004
    [41]
    Z. H. Liao, S. Zhang, K. Li, G. Q. Zhang, and T. G. Habetler, “A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries,” J. Power Sources, vol. 436, p. 226879, Oct. 2019.
    [42]
    W. Choi, Y. Seo, K. Yoo, T. J. Ko, and J. Choi, “Carbon nanotube-based strain sensor for excessive swelling detection of lithium-ion battery,” in Proc. 20th Int. Conf. Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII, Berlin, Germany, 2019, pp. 2356−2359.
    [43]
    C. J. Bae, A. Manandhar, P. Kiesel, and A. Raghavan, “Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor,” Energy Technol., vol. 4, no. 7, pp. 851–855, Jul. 2016. doi: 10.1002/ente.201500514
    [44]
    A. Fortier, M. Tsao, N. D. Williard, Y. J. Xing, and M. G. Pecht, “Preliminary study on integration of fiber optic bragg grating sensors in li-ion batteries and in situ strain and temperature monitoring of battery cells,” Energies, vol. 10, no. 7, p. 838, Jun. 2017.
    [45]
    E. McTurk, T. Amietszajew, J. Fleming, and R. Bhagat, “Thermo-electrochemical instrumentation of cylindrical Li-ion cells,” J. Power Sources, vol. 379, pp. 309–316, Mar. 2018. doi: 10.1016/j.jpowsour.2018.01.060
    [46]
    M. Nascimento, S. Novais, M. S. Ding, M. S. Ferreira, S. Koch, S. Passerini, and J. L. Pinto, “Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries,” J. Power Sources, vol. 410-411, pp. 1–9, Jan. 2019. doi: 10.1016/j.jpowsour.2018.10.096
    [47]
    A. Raghavan, P. Kiesel, L. W. Sommer, J. Schwartz, A. Lochbaum, A. Hegyi, A. Schuh, K. Arakaki, B. Saha, A. Ganguli, K. H. Kim, C. Kim, H. J. Hah, S. Kim, G. O. Hwang, G. C. Chung, B. Choi, and M. Alamgir, “Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: Cell embedding method and performance,” J. Power Sources, vol. 341, pp. 466–473, Feb. 2017. doi: 10.1016/j.jpowsour.2016.11.104
    [48]
    J. Q. Huang, X. L. Han, F. Liu, C. Gervillié, L. A. Blanquer, T. Guo, and J. M. Tarascon, “Monitoring battery electrolyte chemistry via in-operando tilted fiber Bragg grating sensors,” Energy Environ. Sci., vol. 14, no. 12, pp. 6464–6475, Oct. 2021. doi: 10.1039/D1EE02186A
    [49]
    A. Nedjalkov, J. Meyer, A. Gräfenstein, B. Schramm, M. Angelmahr, J. Schwenzel, and W. Schade, “Refractive index measurement of lithium ion battery electrolyte with etched surface cladding waveguide Bragg gratings and cell electrode state monitoring by optical strain sensors,” Batteries, vol. 5, no. 1, p. 30, Mar. 2019.
    [50]
    J. Hedman, D. Nilebo, E. Larsson Langhammer, and F. Björefors, “Fibre optic sensor for characterisation of lithium-ion batteries,” ChemSusChem, vol. 13, no. 21, pp. 5731–5739, Nov. 2020. doi: 10.1002/cssc.202001709
    [51]
    Y. F. Yu, E. Vergori, D. Worwood, Y. Tripathy, Y. Guo, A. Somá, D. Greenwood, and J. Marco, “Distributed thermal monitoring of lithium ion batteries with optical fibre sensors,” J. Energy Storage, vol. 39, p. 102560, Jul. 2021.
    [52]
    W. J. Han, T. Wik, A. Kersten, G. Z. Dong, and C. F. Zou, “Next-generation battery management systems: Dynamic reconfiguration,” IEEE Ind. Electron. Mag., vol. 14, no. 4, pp. 20–31, Dec. 2020. doi: 10.1109/MIE.2020.3002486
    [53]
    G. Konstantinou, J. Pou, S. Ceballos, and V. G. Agelidis, “Active redundant submodule configuration in modular multilevel converters,” IEEE Trans. Power Delivery, vol. 28, no. 4, pp. 2333–2341, Oct. 2013. doi: 10.1109/TPWRD.2013.2264950
    [54]
    T. Kim, W. Qiao, and L. Y. Qu, “Series-connected self-reconfigurable multicell battery,” in Proc. 26th Annu. IEEE Applied Power Electronics Conf. and Exposition, Fort Worth, USA, 2011, pp. 1382−1387.
    [55]
    F. Ji, L. Liao, T. Z. Wu, C. Chang, and M. N. Wang, “Self-reconfiguration batteries with stable voltage during the full cycle without the DC-DC converter,” J. Energy Storage, vol. 28, p. 101213, Apr. 2020.
    [56]
    N. Bouchhima, M. Schnierle, S. Schulte, and K. P. Birke, “Active model-based balancing strategy for self-reconfigurable batteries,” J. Power Sources, vol. 322, pp. 129–137, Aug. 2016. doi: 10.1016/j.jpowsour.2016.05.027
    [57]
    S. K. Mandal, R. N. Mahapatra, P. S. Bhojwani, and S. P. Mohanty, “IntellBatt: Toward a smarter battery,” Computer, vol. 43, no. 3, pp. 67–71, Mar. 2010. doi: 10.1109/MC.2010.72
    [58]
    F. Jiang, C. Jin, Y. J. Liu, H. Li, X. Y. Zhang, Y. Z. Yang, J. Peng, and Z. W. Huang, “SoH-aware charging of supercapacitor with lifetime maximization,” in Proc. IEEE Energy Conversion Congr. and Exposition, Baltimore, USA, 2019, pp. 5380−5385.
    [59]
    N. Bouchhima, M. Gossen, S. Schulte, and K. P. Birke, “Lifetime of self-reconfigurable batteries compared with conventional batteries,” J. Energy Storage, vol. 15, pp. 400–407, Feb. 2018. doi: 10.1016/j.est.2017.11.014
    [60]
    X. L. Bian, Z. B. Wei, J. T. He, F. J. Yan, and L. C. Liu, “A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12173–12184, Dec. 2021. doi: 10.1109/TIE.2020.3044779
    [61]
    Z. B. Wei, J. Y. Zhao, D. X. Ji, and K. J. Tseng, “A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model,” Appl. Energy, vol. 204, pp. 1264–1274, Oct. 2017. doi: 10.1016/j.apenergy.2017.02.016
    [62]
    X. P. Tang, F. R. Gao, K. L. Liu, Q. Liu, and A. M. Foley, “A balancing current ratio based state-of-health estimation solution for lithium-ion battery pack,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8055–8065, Aug. 2022. doi: 10.1109/TIE.2021.3108715
    [63]
    X. Y. Li, C. G. Yuan, and Z. P. Wang, “State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression,” Energy, vol. 203, p. 117852, Jul. 2020.
    [64]
    J. P. Tian, R. Xiong, and W. X. Shen, “State-of-health estimation based on differential temperature for lithium ion batteries,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10363–10373, Oct. 2020. doi: 10.1109/TPEL.2020.2978493
    [65]
    Z. B. Wei, D. F. Zhao, H. W. He, W. K. Cao, and G. Z. Dong, “A noise-tolerant model parameterization method for lithium-ion battery management system,” Appl. Energy, vol. 268, p. 114932, Jun. 2020.
    [66]
    X. Sui, S. He, J. H. Meng, R. Teodorescu, and D. I. Stroe, “Fuzzy entropy-based state of health estimation for Li-ion batteries,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 4, pp. 5125–5137, Aug. 2021. doi: 10.1109/JESTPE.2020.3047004
    [67]
    Y. W. Deng, H. J. Ying, J. Q. E, H. Zhu, K. X. Wei, J. W. Chen, F. Zhang, and G. L. Liao, “Feature parameter extraction and intelligent estimation of the state-of-health of lithium-ion batteries,” Energy, vol. 176, pp. 91–102, Jun. 2019. doi: 10.1016/j.energy.2019.03.177
    [68]
    P. H. Michel and V. Heiries, “An adaptive sigma point Kalman filter hybridized by support vector machine algorithm for battery SoC and SoH estimation,” in Proc. IEEE 81st Vehicular Technology Conf., Glasgow, UK, 2015, pp. 1−7.
    [69]
    S. Son, S. Jeong, E. Kwak, J. H. Kim, and K. Y. Oh, “Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features,” Energy, vol. 238, p. 121712, Jan. 2022.
    [70]
    Z. W. Deng, X. S. Hu, X. K. Lin, L. Xu, Y. H. Che, and L. Hu, “General discharge voltage information enabled health evaluation for lithium-ion batteries,” IEEE/ASME Trans. Mechatron., vol. 26, no. 3, pp. 1295–1306, Jun. 2021. doi: 10.1109/TMECH.2020.3040010
    [71]
    Z. W. He, M. Y. Gao, G. J. Ma, Y. Y. Liu, and S. X. Chen, “Online state-of-health estimation of lithium-ion batteries using dynamic Bayesian networks,” J. Power Sources, vol. 267, pp. 576–583, Dec. 2014. doi: 10.1016/j.jpowsour.2014.05.100
    [72]
    M. Jafari, L. E. Brown, and L. Gauchia, “A Bayesian framework for EV battery capacity fade modeling,” in Proc. IEEE Transportation Electrification Conf. and Expo, Long Beach, USA, 2018, pp. 304−308.
    [73]
    Q. Huo, Z. K. Ma, X. S. Zhao, T. Zhang, and Y. L. Zhang, “Bayesian network based state-of-health estimation for battery on electric vehicle application and its validation through real-world data,” IEEE Access, vol. 9, pp. 11328–11341, Jan. 2021. doi: 10.1109/ACCESS.2021.3050557
    [74]
    D. Yang, Y. J. Wang, R. Pan, R. Y. Chen, and Z. H. Chen, “A neural network based state-of-health estimation of lithium-ion battery in electric vehicles,” Energy Procedia, vol. 105, pp. 2059–2064, May 2017. doi: 10.1016/j.egypro.2017.03.583
    [75]
    S. H. Zhang, M. S. Hosen, T. Kalogiannis, J. Van Mierlo, and M. Berecibar, “State of health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy and backpropagation neural network,” World Electr. Veh. J., vol. 12, no. 3, p. 156, Sep. 2021.
    [76]
    Y. N. Sun, J. L. Zhang, K. F. Zhang, H. H. Qi, and C. J. Zhang, “Battery state of health estimation method based on sparse auto-encoder and backward propagation fading diversity among battery cells,” Int. J. Energy Res., vol. 45, no. 5, pp. 7651–7662, Apr. 2021. doi: 10.1002/er.6346
    [77]
    L. Mao, H. Z. Hu, J. J. Chen, J. B. Zhao, K. Q. Qu, and L. Jiang, “Online state of health estimation method for lithium-ion battery based on CEEMDAN for feature analysis and RBF neural network,” IEEE J. Emerg. Sel. Top. Power Electron., 2021. DOI: 10.1109/JESTPE.2021.3106708
    [78]
    Z. B. Wei, J. Hu, H. W. He, Y. Li, and B. Y. Xiong, “Load current and state-of-charge coestimation for current sensor-free lithium-ion battery,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 10970–10975, Oct. 2021. doi: 10.1109/TPEL.2021.3068725
    [79]
    X. Sui, S. He, S. B. Vilsen, R. Teodorescu, and D. I. Stroe, “Fast and robust estimation of lithium-ion batteries state of health using ensemble learning,” in Proc. IEEE Energy Conversion Congr. and Expo., Vancouver, Canada, 2021, pp. 1393−1399.
    [80]
    H. Chaoui and C. C. Ibe-Ekeocha, “State of charge and state of health estimation for lithium batteries using recurrent neural networks,” IEEE Trans. Vehicular Technol., vol. 66, no. 10, pp. 8773–8783, Oct. 2017. doi: 10.1109/TVT.2017.2715333
    [81]
    Y. T. Wu, Q. Xue, J. W. Shen, Z. Z. Lei, Z. Chen, and Y. G. Liu, “State of health estimation for lithium-ion batteries based on healthy features and long short-term memory,” IEEE Access, vol. 8, pp. 28533–28547, Feb. 2020. doi: 10.1109/ACCESS.2020.2972344
    [82]
    P. H. Li, Z. J. Zhang, Q. Y. Xiong, B. C. Ding, J. Hou, D. C. Luo, Y. J. Rong, and S. Y. Li, “State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network,” J. Power Sources, vol. 459, p. 228069, May 2020.
    [83]
    W. Zhang, X. Li, and X. Li, “Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation,” Measurement , vol. 164, p. 108052, Nov. 2020.
    [84]
    S. M. Cui and I. Joe, “A dynamic spatial-temporal attention-based GRU model with healthy features for state-of-health estimation of lithium-ion batteries,” IEEE Access, vol. 9, pp. 27374–27388, Feb. 2021. doi: 10.1109/ACCESS.2021.3058018
    [85]
    K. L. Liu, T. R. Ashwin, X. S. Hu, M. Lucu, and W. D. Widanage, “An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries,” Renew. Sustainable Energy Rev., vol. 131, p. 110017, Oct. 2020.
    [86]
    J. Wu, C. B. Zhang, and Z. H. Chen, “An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks,” Appl. Energy, vol. 173, pp. 134–140, Jul. 2016. doi: 10.1016/j.apenergy.2016.04.057
    [87]
    X. P. Tang, K. L. Liu, X. Wang, F. R. Gao, J. MacRo, and W. D. Widanage, “Model migration neural network for predicting battery aging trajectories,” IEEE Trans. Transp. Electrif., vol. 6, no. 2, pp. 363–374, Jun. 2020. doi: 10.1109/TTE.2020.2979547
    [88]
    Y. Z. Zhang, R. Xiong, H. W. He, and M. G. Pecht, “Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 5695–5705, Jul. 2018. doi: 10.1109/TVT.2018.2805189
    [89]
    K. L. Liu, Y. L. Shang, Q. Ouyang, and W. D. Widanage, “A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3170–3180, Apr. 2021. doi: 10.1109/TIE.2020.2973876
    [90]
    Y. J. Guo, Z. L. Yang, K. L. Liu, Y. H. Zhang, and W. Feng, “A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system,” Energy, vol. 219, p. 119529, Mar. 2021.
    [91]
    T. C. Qin, S. K. Zeng, and J. B. Guo, “Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model,” Microelectron. Reliab., vol. 55, no. 9-10, pp. 1280–1284, Aug.–Sep. 2015. doi: 10.1016/j.microrel.2015.06.133
    [92]
    Y. T. Chen, J. Xiong, W. H. Xu, and J. W. Zuo, “A novel online incremental and decremental learning algorithm based on variable support vector machine,” Cluster Comput., vol. 22, no. 3, pp. 7435–7445, May 2019.
    [93]
    G. J. Wang, J. Wu, R. He, and B. Tian, “Speed and accuracy tradeoff for LiDAR data based road boundary detection,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1210–1220, Jun. 2021. doi: 10.1109/JAS.2020.1003414
    [94]
    R. R. Richardson, M. A. Osborne, and D. A. Howey, “Gaussian process regression for forecasting battery state of health,” J. Power Sources, vol. 357, pp. 209–219, Jul. 2017. doi: 10.1016/j.jpowsour.2017.05.004
    [95]
    Y. W. Zhang, Q. C. Tang, Y. Zhang, J. B. Wang, U. Stimming, and A. A. Lee, “Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning,” Nat. Commun., vol. 11, no. 1, p. 1706, Apr. 2020.
    [96]
    K. L. Liu, Y. Li, X. S. Hu, M. Lucu, and W. D. Widanage, “Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries,” IEEE Trans. Ind. Inf., vol. 16, no. 6, pp. 3767–3777, Oct. 2020. doi: 10.1109/TII.2019.2941747
    [97]
    K. Liu, X. Hu, Z. Wei, Y. Li, and Y. Jiang, “Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries,” IEEE Trans. Transp. Electrif., vol. 5, no. 4, pp. 1225–1236, Dec. 2019. doi: 10.1109/TTE.2019.2944802
    [98]
    K. L. Liu, X. P. Tang, R. Teodorescu, F. R. Gao, and J. H. Meng, “Future ageing trajectory prediction for lithium-ion battery considering the knee point effect,” IEEE Trans. Energy Convers., 2021. DOI: 10.1109/tec.2021.3130600
    [99]
    M. Lucu, E. Martinez-Laserna, I. Gandiaga, K. Liu, H. Camblong, W. D. Widanage, and J. Marco, “Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - part B: Cycling operation,” J. Energy Storage, vol. 30, p. 101410, Aug. 2020.
    [100]
    D. Wang, Q. Miao, and M. Pecht, “Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model,” J. Power Sources, vol. 239, pp. 253–264, Oct. 2013. doi: 10.1016/j.jpowsour.2013.03.129
    [101]
    D. T. Liu, J. B. Zhou, D. W. Pan, Y. Peng, and X. Y. Peng, “Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with incremental learning,” Measurement, vol. 63, pp. 143–151, Mar. 2015. doi: 10.1016/j.measurement.2014.11.031
    [102]
    H. K. Ruan, H. W. He, Z. B. Wei, Z. Y. Quan, and Y. W. Li, “State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction,” IEEE J. Emerg. Sel. Top. Power Electron., 2021. DOI: 10.1109/JESTPE.2021.3098836
    [103]
    C. F. Zou, A. Klintberg, Z. B. Wei, B. Fridholm, T. Wik, and B. Egardt, “Power capability prediction for lithium-ion batteries using economic nonlinear model predictive control,” J. Power Sources, vol. 396, pp. 580–589, Aug. 2018. doi: 10.1016/j.jpowsour.2018.06.034
    [104]
    Z. B. Wei, Z. Y. Quan, J. D. Wu, Y. Li, J. Pou, and H. Zhong, “Deep deterministic policy gradient-DRL enabled multiphysics-constrained fast charging of lithium-ion battery,” IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 2588–2598, Mar. 2022. doi: 10.1109/TIE.2021.3070514
    [105]
    Z. B. Wei, H. W. He, J. Pou, K. L. Tsui, Z. Y. Quan, and Y. W. Li, “Signal-disturbance interfacing elimination for unbiased model parameter identification of lithium-ion battery,” IEEE Trans. Ind. Inf., vol. 17, no. 9, pp. 5887–5897, Sep. 2021. doi: 10.1109/TII.2020.3047687
    [106]
    Y. Li, Z. B. Wei, B. Y. Xiong, and D. M. Vilathgamuwa, “Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 69, no. 7, pp. 6984–6996, Jul. 2022. doi: 10.1109/TIE.2021.3095815
    [107]
    X. B. Han, M. G. Ouyang, L. G. Lu, and J. Q. Li, “Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model,” J. Power Sources, vol. 278, pp. 802–813, Mar. 2015. doi: 10.1016/j.jpowsour.2014.12.101
    [108]
    V. R. Subramanian, V. D. Diwakar, and D. Tapriyal, “Efficient macro-micro scale coupled modeling of batteries,” J. Electrochem. Soc., vol. 152, no. 10, p. A2002, Jan. 2005.
    [109]
    C. L. Li, N. X. Cui, C. Y. Wang, and C. H. Zhang, “Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods,” Energy, vol. 221, p. 119662, Apr. 2021.
    [110]
    Y. Z. Gao, K. L. Liu, C. Zhu, X. Zhang, and D. Zhang, “Co-estimation of state-of-charge and state-of-health for lithium-ion batteries using an enhanced electrochemical model,” IEEE Trans. Ind. Electron., vol. 69, no. 3, pp. 2684–2696, Mar. 2022. doi: 10.1109/TIE.2021.3066946
    [111]
    C. F. Zou, X. S. Hu, Z. B. Wei, T. Wik, and B. Egardt, “Electrochemical estimation and control for lithium-ion battery health-aware fast charging,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6635–6645, Aug. 2018. doi: 10.1109/TIE.2017.2772154
    [112]
    Z. Y. Chu, X. N. Feng, L. G. Lu, J. Q. Li, X. B. Han, and M. G. Ouyang, “Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model,” Appl. Energy, vol. 204, pp. 1240–1250, Oct. 2017. doi: 10.1016/j.apenergy.2017.03.111
    [113]
    B. Lu, Y. F. Zhao, Y. C. Song, and J. Q. Zhang, “Stress-limited fast charging methods with time-varying current in lithium-ion batteries,” Electrochim. Acta, vol. 288, pp. 144–152, Oct. 2018. doi: 10.1016/j.electacta.2018.09.009
    [114]
    Y. F. Lu, X. B. Han, Z. Y. Chu, X. N. Feng, Y. D. Qin, M. G. Ouyang, and L. G. Lu, “A decomposed electrode model for real-time anode potential observation of lithium-ion batteries,” J. Power Sources, vol. 513, p. 230529, Nov. 2021.
    [115]
    T. Z. Zhao, Y. J. Zheng, J. H. Liu, X. Zhou, Z. Y. Chu, and X. B. Han, “A study on half-cell equivalent circuit model of lithium-ion battery based on reference electrode,” Int. J. Energy Res., vol. 45, no. 3, pp. 4155–4169, Mar. 2021. doi: 10.1002/er.6081
    [116]
    M. Hahn, A. Schiela, P. Mößle, F. Katzer, and M. A. Danzer, “Revealing inhomogeneities in electrode lithiation using a real-time discrete electro-chemical model,” J. Power Sources, vol. 477, p. 228672, Nov. 2020.
    [117]
    P. M. Attia, A. Grover, N. O. R. M. Jin, K. A. Severson, T. M. Markov, Y. H. Liao, M. H. Chen, B. Cheong, N. Perkins, Z. Yang, P. K. Herring, M. Aykol, S. J. Harris, R. D. Braatz, S. Ermon, and W. C. Chueh, “Closed-loop optimization of fast-charging protocols for batteries with machine learning,” Nature, vol. 578, no. 7795, pp. 397–402, Feb. 2020. doi: 10.1038/s41586-020-1994-5
    [118]
    Q. Ouyang, Z. S. Wang, K. L. Liu, G. T. Xu, and Y. Li, “Optimal charging control for lithium-ion battery packs: A distributed average tracking approach,” IEEE Trans. Ind. Inf., vol. 16, no. 5, pp. 3430–3438, May 2020. doi: 10.1109/TII.2019.2951060
    [119]
    Y. Xie, J. T. Zheng, X. S. Hu, X. K. Lin, K. L. Liu, J. L. Sun, Y. J. Zhang, D. Dan, D. Xi, and F. Feng, “An improved resistance-based thermal model for prismatic lithium-ion battery charging,” Appl. Therm. Eng., vol. 180, p. 115794, Nov. 2020.
    [120]
    W. Li, Y. Xie, K. L. Liu, R. Yang, B. Chen, and Y. J. Zhang, “An enhanced thermal model with virtual resistance technique for pouch batteries at low temperature and high current rates,” IEEE J. Emerg. Sel. Top. Power Electron., 2021. DOI: 10.1109/JESTPE.2021.3127892
    [121]
    Y. Z. Gao, X. Zhang, B. J. Guo, C. Zhu, J. Wiedemann, L. Wang, and J. H. Cao, “Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery,” IEEE Trans. Ind. Inf., vol. 16, no. 5, pp. 3417–3429, May 2020. doi: 10.1109/TII.2019.2935326
    [122]
    W. L. Xie, X. H. Liu, R. He, Y. L. Li, X. L. Gao, X. H. Li, Z. X. Peng, S. W. Feng, X. N. Feng, and S. C. Yang, “Challenges and opportunities toward fast-charging of lithium-ion batteries,” J. Energy Storage, vol. 32, p. 101837. Dec. 2020.
    [123]
    Y. Gao, J. C. Jiang, C. P. Zhang, W. G. Zhang, Z. Y. Ma, and Y. Jiang, “Lithium-ion battery aging mechanisms and life model under different charging stresses,” J. Power Sources, vol. 356, pp. 103–114, Jul. 2017. doi: 10.1016/j.jpowsour.2017.04.084
    [124]
    J. W. Lu, Q. L. Wei, and F. Y. Wang, “Parallel control for optimal tracking via adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1662–1674, Nov. 2020. doi: 10.1109/JAS.2020.1003426
    [125]
    Z. Chen, B. Xia, C. C. Mi, and R. Xiong, “Loss-minimization-based charging strategy for lithium-ion battery,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 4121–4129, Sep.–Oct. 2015. doi: 10.1109/TIA.2015.2417118
    [126]
    M. Xu, R. Wang, P. Zhao, and X. Wang, “Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model,” J. Power Sources, vol. 438, p. 227015, Oct. 2019.
    [127]
    X. Q. Shang, D. Y. Shen, F. Y. Wang, and T. R. Nyberg, “A heuristic algorithm for the fabric spreading and cutting problem in apparel factories,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 961–968, Jul. 2019. doi: 10.1109/JAS.2019.1911573
    [128]
    C. P. Zhang, J. C. Jiang, Y. Gao, W. G. Zhang, Q. J. Liu, and X. S. Hu, “Charging optimization in lithium-ion batteries based on temperature rise and charge time,” Appl. Energy, vol. 194, pp. 569–577, May 2017. doi: 10.1016/j.apenergy.2016.10.059
    [129]
    K. L. Liu, X. S. Hu, Z. L. Yang, Y. Xie, and S. Z. Feng, “Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation,” Energy Convers. Manage., vol. 195, pp. 167–179, Sep. 2019. doi: 10.1016/j.enconman.2019.04.065
    [130]
    X. S. Hu, Y. S. Zheng, X. K. Lin, and Y. Xie, “Optimal multistage charging of NCA/Graphite lithium-ion batteries based on electrothermal-aging dynamics,” IEEE Trans. Transp. Electrif., vol. 6, no. 2, pp. 427–438, Feb. 2020. doi: 10.1109/TTE.2020.2977092
    [131]
    K. L. Liu, K. Li, H. P. Ma, J. H. Zhang, and Q. Peng, “Multi-objective optimization of charging patterns for lithium-ion battery management,” Energy Convers. Manage., vol. 159, pp. 151–162, Mar. 2018. doi: 10.1016/j.enconman.2017.12.092
    [132]
    K. L. Liu, C. F. Zou, K. Li, and T. Wik, “Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model,” IEEE Trans. Ind. Inf., vol. 14, no. 12, pp. 5463–5474, Dec. 2018. doi: 10.1109/TII.2018.2866493
    [133]
    K. L. Liu, K. Li, Z. L. Yang, C. Zhang, and J. Deng, “An advanced lithium-ion battery optimal charging strategy based on a coupled thermoelectric model,” Electrochim. Acta, vol. 225, pp. 330–344, Jan. 2017. doi: 10.1016/j.electacta.2016.12.129
    [134]
    S. Abrazeh, A. Parvaresh, S. R. Mohseni, M. J. Zeitouni, M. Gheisarnejad, and M. H. Khooban, “Nonsingular terminal sliding mode control with ultra-local model and single input interval type-2 fuzzy logic control for pitch control of wind turbines,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 690–700, Mar. 2021. doi: 10.1109/JAS.2021.1003889
    [135]
    J. C. Jiang, C. P. Zhang, J. P. Wen, W. G. Zhang, and S. M. Sharkh, “An optimal charging method for Li-ion batteries using a fuzzy-control approach based on polarization properties,” IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3000–3009, Sep. 2013. doi: 10.1109/TVT.2013.2252214
    [136]
    M. F. Bandpey and K. G. Firouzjah, “Two-stage charging strategy of plug-in electric vehicles based on fuzzy control,” Comput. Oper. Res., vol. 96, pp. 236–243, Aug. 2018. doi: 10.1016/j.cor.2017.07.014
    [137]
    B. L. Ye, W. M. Wu, K. Y. Ruan, L. X. Li, T. H. Chen, H. M. Gao, and Y. B. Chen, “A survey of model predictive control methods for traffic signal control,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 623–640, May 2019. doi: 10.1109/JAS.2019.1911471
    [138]
    M. A. Xavier and M. S. Trimboli, “Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models,” J. Power Sources, vol. 285, pp. 374–384, Jul. 2015. doi: 10.1016/j.jpowsour.2015.03.074
    [139]
    K. L. Liu, K. Li, and C. Zhang, “Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model,” J. Power Sources, vol. 347, pp. 145–158, Apr. 2017. doi: 10.1016/j.jpowsour.2017.02.039
    [140]
    J. D. Wu, Z. B. Wei, W. H. Li, Y. Wang, Y. W. Li, and D. U. Sauer, “Battery thermal-and health-constrained energy management for hybrid electric bus based on soft actor-critic DRL algorithm,” IEEE Trans. Ind. Inf., vol. 17, no. 6, pp. 3751–3761, Jun. 2021. doi: 10.1109/TII.2020.3014599
    [141]
    J. D. Wu, Z. B. Wei, K. L. Liu, Z. Y. Quan, and Y. W. Li, “Battery-involved energy management for hybrid electric bus based on expert-assistance deep deterministic policy gradient algorithm,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12786–12796, Nov. 2020. doi: 10.1109/TVT.2020.3025627
    [142]
    S. Park, A. Pozzi, M. Whitmeyer, H. Perez, W. T. Joe, D. M. Raimondo, and S. Moura, “Reinforcement learning-based fast charging control strategy for Li-ion batteries,” in Proc. IEEE Conf. Control Technology and Applications, Montreal, Canada, 2020, pp. 100−107.
    [143]
    M. Ghahramani, Y. Qiao, M. C. Zhou, A. O’Hagan, and J. Sweeney, “AI-based modeling and data-driven evaluation for smart manufacturing processes,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1026–1037, Jul. 2020. doi: 10.1109/JAS.2020.1003114
    [144]
    Q. Y. Wang, W. H. Jiao, P. Wang, and Y. M. Zhang, “Digital twin for human-robot interactive welding and welder behavior analysis,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 334–343, Feb. 2021. doi: 10.1109/JAS.2020.1003518
    [145]
    G. Q. Zu, W. Si, Y. Yao, H. F. Liu, H. S. Liang, and D. L. Ji, “Design of online monitoring system for distribution transformer based on cloud side end collaboration of internet of things,” Int. J. Wireless Inf. Netw., vol. 28, no. 3, pp. 276–286, Jun. 2021. doi: 10.1007/s10776-021-00521-y
    [146]
    Y. J. Wang, R. L. Xu, C. J. Zhou, X. Kang, and Z. H. Chen, “Digital twin and cloud-side-end collaboration for intelligent battery management system,” J. Manuf. Syst., vol. 62, pp. 124–134, Jan. 2022. doi: 10.1016/j.jmsy.2021.11.006
    [147]
    D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and X. D. Wu, “A data-characteristic-aware latent factor model for web services QoS prediction,” IEEE Trans. Knowl. Data Eng., 2020. DOI: 10.1109/TKDE.2020.3014302
    [148]
    X. Luo, H. Wu, Z. Wang, J. J. Wang, and D. Y. Meng, “A novel approach to large-scale dynamically weighted directed network representation,” IEEE Trans. Pattern Anal. Mach. Intell, 2021. DOI: 10.1109/TPAMI.2021.3132503
    [149]
    X. Luo, Y. Yuan, S. L. Chen, N. Y. Zeng, and Z. D. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., 2020. DOI: 10.1109/TKDE.2020.3033324
    [150]
    X. Luo, Y. Zhou, Z. G. Liu, and M. C. Zhou, “Fast and accurate non-negative latent factor analysis on high-dimensional and sparse matrices in recommender systems,” IEEE Trans. Knowl. Data Eng., 2021. DOI: 10.1109/TKDE.2021.3125252
    [151]
    X. P. Tang, K. L. Liu, K. Li, W. D. Widanage, E. Kendrick, and F. R. Gao, “Recovering large-scale battery aging dataset with machine learning,” Patterns, vol. 2, no. 8, p. 100302, Aug. 2021.
    [152]
    T. Y. Hu, H. M. Ma, K. L. Liu, and H. B. Sun, “Lithium-ion battery calendar health prognostics based on knowledge-data-driven attention,” IEEE Trans. Ind. Electron., 2022. DOI: 10.1109/TIE.2022.3148743
    [153]
    K. L. Liu, Q. Peng, H. B. Sun, M. R. Fei, H. M. Ma, and T. Y. Hu. “A transferred recurrent neural network for battery calendar health prognostics of energy-transportation systems,” IEEE Trans. Ind. Inf., 2022. DOI: 10.1109/TII.2022.3145573
    [154]
    D. Xu, Y. X. Shi, I. W. Tsang, Y. S. Ong, C. Gong, and X. B. Shen, “Survey on multi-output learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2409–2429, Jul. 2020.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(6)

    Article Metrics

    Article views (1661) PDF downloads(460) Cited by()

    Highlights

    • AI-based manufacturing and smart battery to benefit battery health are showcased
    • Advanced AI solutions for battery life diagnostic and ageing prediction are reviewed
    • Control-oriented model and health-conscious charging to enhance battery longevity are presented
    • Current research gaps in the literature and remaining challenges are analyzed
    • Potential directions to achieve more technological breakthroughs are discussed

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return