IEEE/CAA Journal of Automatica Sinica
Citation: | Z. L. Yuan, X. R. Li, D. Wu, X. J. Ban, N.-Q. Wu, H.-N. Dai, and H. Wang, “Continuous-time prediction of industrial paste thickener system with differential ODE-net,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 686–698, Apr. 2022. doi: 10.1109/JAS.2022.105464 |
[1] |
S. Yin, Y. Shao, A. Wu, H. Wang, X. Liu, and Y. Wang, “A systematic review of paste technology in metal mines for cleaner production in china,” Journal of Cleaner Production, vol. 247, Article No. 119590, 2020. doi: 10.1016/j.jclepro.2019.119590
|
[2] |
Z.-L. Yuan, R.-Z. He, C. Yao, J. Li, X.-J. Ban, and X.-R. Li, “Online reinforcement learning control algorithm for concentration of thickener underflow,” Acta Automatica Sinica, vol. 45, pp. 1–15, 2019.
|
[3] |
H. Li, A. Wu, and H. Wang, “Evaluation of short-term strength development of cemented backfill with varying sulphide contents and the use of additives,” Journal of Environmental Management, vol. 239, pp. 279–286, 2019.
|
[4] |
C. K. Tan, J. Bao, and G. Bickert, “A study on model predictive control in paste thickeners with rake torque constraint,” Minerals Engineering, vol. 105, pp. 52–62, 2017. doi: 10.1016/j.mineng.2017.01.011
|
[5] |
F. Núnez, S. Langarica, Díaz, M. Torres, and J. C. Salas, “Neural network-based model predictive control of a paste thickener over an industrial internet platform,” IEEE Trans. Industrial Informatics, vol. 16, no. 4, pp. 2859–2867, 2019.
|
[6] |
Z. Yuan, J. Hu, D. Wu, and X. Ban, “A dual-attention recurrent neural network method for deep cone thickener underflow concentration prediction,” Sensors (Switzerland)
|
[7] |
A. Wu, Z. Ruan, R. Bürger, S. Yin, J. Wang, and Y. Wang, “Optimization of flocculation and settling parameters of tailings slurry by response surface methodology,” Minerals Engineering, vol. 156, Article No. 106488, 2020. doi: 10.1016/j.mineng.2020.106488
|
[8] |
E. K. Larsson and T. Söderström, “Identification of continuous-time AR processes from unevenly sampled data,” Automatica, vol. 38, no. 4, pp. 709–718, 2002. doi: 10.1016/S0005-1098(01)00244-8
|
[9] |
A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational Intelligence and Neuroscience, vol. 2018, PP. 1–13, 2018.
|
[10] |
B. Ma, X. Wei, C. Liu, X. Ban, H. Huang, H. Wang, W. Xue, S. Wu, M. Gao, Q. Shen, “Data augmentation in microscopic images for material data mining,” NPJ Computational Materials, vol. 6, no. 1, pp. 1–9, 2020. doi: 10.1038/s41524-019-0267-z
|
[11] |
B. Ma, Y. Zhu, X. Yin, X. Ban, H. Huang, and M. Mukeshimana, “Sesffuse: An unsupervised deep model for multi-focus image fusion,” Neural Computing and Applications, vol. 33, no. 11, pp. 5793–5804, 2021. doi: 10.1007/s00521-020-05358-9
|
[12] |
T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55–75, 2018. doi: 10.1109/MCI.2018.2840738
|
[13] |
H. Liu, I. Chatterjee, M. Zhou, X. S. Lu, and A. Abusorrah, “Aspectbased sentiment analysis: A survey of deep learning methods,” IEEE Trans. Computational Social Systems, vol. 7, no. 6, pp. 1358–1375, 2020. doi: 10.1109/TCSS.2020.3033302
|
[14] |
A. E. Essien and C. Giannetti, “A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders,” IEEE Trans. Industrial Informatics, vol. 16, no. 9, pp. 6069–6078, 2020. doi: 10.1109/TII.2020.2967556
|
[15] |
J. Liu, N. Wu, Y. Qiao, and Z. Li, “Short-term traffic flow forecasting using ensemble approach based on deep belief networks,” IEEE Trans. Intelligent Transportation Systems, pp. 1–14, 2020. DOI: 10.1109/TITS.2020.3011700
|
[16] |
J. Fei and L. Liu, “Real-time nonlinear model predictive control of active power filter using self-feedback recurrent fuzzy neural network estimator,” IEEE Trans. Industrial Electronics, pp. 1–1, 2021. DOI: 10.1109/TIE.2021.3106007
|
[17] |
D. A. Neu, J. Lahann, and Fettke, “A systematic literature review on state-of-the-art deep learning methods for process prediction,” Artificial Intelligence Review, pp. 1–27, 2021. DOI: 10.1007/s10462-021-09960-8
|
[18] |
H. Li, G. Hu, J. Li, and M. Zhou, “Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks and random forests,” IEEE Trans. Automation Science and Engineering, pp. 1–11, 2021. DOI: 10.1109/TASE.2020.3048056
|
[19] |
T. Demeester, “System identification with time-aware neural sequence models,” in Proc. AAAI Conf. Artificial Intelligence, vol. 34, no. 4, 2020, pp. 3757–3764.
|
[20] |
C. K. Tan, R. Setiawan, J. Bao, and G. Bickert, “Studies on parameter estimation and model predictive control of paste thickeners,” Journal of Process Control, vol. 28, pp. 1–8, 2015. doi: 10.1016/j.jprocont.2015.02.002
|
[21] |
J. I. Langlois and A. Cipriano, “Dynamic modeling and simulation of tailing thickener units for the development of control strategies,” Minerals Engineering, vol. 131, pp. 131–139, 2019. doi: 10.1016/j.mineng.2018.11.006
|
[22] |
X. Luo, M. Zhou, S. Li, and M. Shang, “An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications,” IEEE Trans. Industrial Informatics, vol. 14, no. 5, pp. 2011–2022, 2017.
|
[23] |
X. Luo, M. Zhou, S. Li, Y. Xia, Z.-H. You, Q. Zhu, and H. Leung, “Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing qos data,” IEEE Transactions on Cybernetics, vol. 48, no. 4, pp. 1216–1228, 2017.
|
[24] |
D. Wu, X. Luo, M. Shang, Y. He, G. Wang, and X. Wu, “A datacharacteristic-aware latent factor model for web services QoS prediction,” IEEE Trans. Knowledge and Data Engineering, 2020.
|
[25] |
M. Kebria, A. Khosravi, S. M. Salaken, and S. Nahavandi, “Deep imitation learning for autonomous vehicles based on convolutional neural networks,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 82–95, 2020. doi: 10.1109/JAS.2019.1911825
|
[26] |
W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, 2017. doi: 10.1016/j.neucom.2016.12.038
|
[27] |
T.-Y. Chai, “Development directions of industrial artificial intelligence,” Acta Automatica Sinica, vol. 46, no. 10, pp. 2005–2012, 2020.
|
[28] |
L. Jay, L. Xiang, X. Yuan-Ming, Y. Shaojie, and S. Ke-Yi, “Recent advances and prospects in industrial AI and ap-plications,” Acta Automatica Sinica, vol. 46, no. 10, pp. 2031–2044, 2020.
|
[29] |
D. Wu, H. Wang, and R. Seidu, “Collaborative analysis for computational risk in urban water supply systems,” in Proc. 28th ACM Int. Conf. Information and Knowledge Management, 2019, pp. 2297–2300.
|
[30] |
D. Wu, H. Wang, H. Mohammed, and R. Seidu, “Quality risk analysis for sustainable smart water supply using data perception,” IEEE Trans. Sustainable Computing, vol. 5, no. 3, pp. 377–388, 2020. doi: 10.1109/TSUSC.2019.2929953
|
[31] |
J. Zhou, H.-N. Dai, and H. Wang, “Lightweight convolution neural networks for mobile edge computing in transportation cyber physical systems,” ACM Trans. Intelligent Systems and Technology (TIST)
|
[32] |
H.-N. Dai, R. C.-W. Wong, H. Wang, Z. Zheng, and A. V. Vasilakos, “Big data analytics for large-scale wireless networks: Challenges and opportunities,” ACM Comput. Surv., vol. 52, no. 5, pp. 99:1–99:36, 2019.
|
[33] |
R. Oulhiq, K. Benjelloun, Y. Kali, and M. Saad, “Identification and control of an industrial thickener using historical data,” in Proc. 18th Int. Multi-Conf. on Systems, Signals Devices (SSD), 2021, pp. 915–920.
|
[34] |
Di az, J. C. Salas, A. Cipriano, and F. Núnez, “Random forest model? Predictive control for paste thickening” Minerals Engineering, vol. 163, Article No. 106760, 2021. doi: 10.1016/j.mineng.2020.106760
|
[35] |
R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” in Proc. Advances in Neural Information Processing Systems 31, Curran Associates, Inc., 2018, pp. 6571–6583.
|
[36] |
R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen, “Sequenceto-sequence models can directly translate foreign speech,” in Proc. Interspeech 2017, pp. 2625–2629, 2017.
|
[37] |
M. GEVERS, “A personal view of the development of system identification: A 30-year journey through an exciting field,” IEEE Control Systems Magazine, vol. 26, no. 6, pp. 93–105, 2006. doi: 10.1109/MCS.2006.252834
|
[38] |
T. Chai, Y. Jia, H. Li, and H. Wang, “An intelligent switching control for a mixed separation thickener process,” Control Engineering Practice, vol. 57, pp. 61–71, 2016. doi: 10.1016/j.conengprac.2016.07.007
|
[39] |
B. Kim and M. S. Klima, “Development and application of a dynamic model for hindered-settling column separations,” Minerals Engineering, vol. 17, no. 3, pp. 403–410, 2004. doi: 10.1016/j.mineng.2003.11.013
|
[40] |
M. Guidolin and M. Pedio, “Chapter 4-unit roots and cointegration,” in Essentials of Time Series for Financial Applications, M. Guidolin and M. Pedio, Eds. USA: Academic Press, 2018, pp. 113–149.
|
[41] |
F. Christoffersen, “Forecasting non-stationary economic time series,” Journal of the American Statistical Association, vol. 96, no. 453, pp. 347–347, 2001.
|
[42] |
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv: 1412.6980, 2014.
|
[43] |
Bogacki and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,” Applied Mathematics Letters, vol. 2, no. 4, pp. 321–325, 1989. doi: 10.1016/0893-9659(89)90079-7
|
[44] |
S. Wu, X. Xiao, Q. Ding, P. Zhao, Y. Wei, and J. Huang, “Adversarial sparse transformer for time series forecasting,” Advances in Neural Information Processing Systems, vol. 33, no. NeurIPS, pp. 17105–17115, 2020.
|
[45] |
S. S. Rangapuram, M. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski, “Deep state space models for time series forecasting,” Advances in Neural Information Processing Systems, vol. 2018-Decem, no. NeurIPS, pp. 7785–7794, 2018.
|
[46] |
H. Lu, L. Jin, X. Luo, B. Liao, D. Guo, and L. Xiao, “RNN for solving perturbed time-varying underdetermined linear system with double bound limits on residual errors and state variables,” IEEE Trans. Industrial Informatics, vol. 15, no. 11, pp. 5931–5942, 2019. doi: 10.1109/TII.2019.2909142
|