A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 2
Feb.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Xing Yang, Lei Shu, Jianing Chen, Mohamed Amine Ferrag, Jun Wu, Edmond Nurellari and Kai Huang, "A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 273-302, Feb. 2021. doi: 10.1109/JAS.2020.1003536
Citation: Xing Yang, Lei Shu, Jianing Chen, Mohamed Amine Ferrag, Jun Wu, Edmond Nurellari and Kai Huang, "A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 273-302, Feb. 2021. doi: 10.1109/JAS.2020.1003536

A Survey on Smart Agriculture: Development Modes, Technologies, and Security and Privacy Challenges

doi: 10.1109/JAS.2020.1003536
Funds:

the National Natural Science Foundation of China 62072248

the National Natural Science Foundation of China 61902188

in part by China Postdoctoral Science Foundation 2019M651713

More Information
  • With the deep combination of both modern information technology and traditional agriculture, the era of agriculture 4.0, which takes the form of smart agriculture, has come. Smart agriculture provides solutions for agricultural intelligence and automation. However, information security issues cannot be ignored with the development of agriculture brought by modern information technology. In this paper, three typical development modes of smart agriculture (precision agriculture, facility agriculture, and order agriculture) are presented. Then, 7 key technologies and 11 key applications are derived from the above modes. Based on the above technologies and applications, 6 security and privacy countermeasures (authentication and access control, privacy-preserving, blockchain-based solutions for data integrity, cryptography and key management, physical countermeasures, and intrusion detection systems) are summarized and discussed. Moreover, the security challenges of smart agriculture are analyzed and organized into two aspects: 1) agricultural production, and 2) information technology. Most current research projects have not taken agricultural equipment as potential security threats. Therefore, we did some additional experiments based on solar insecticidal lamps Internet of Things, and the results indicate that agricultural equipment has an impact on agricultural security. Finally, more technologies (5 G communication, fog computing, Internet of Everything, renewable energy management system, software defined network, virtual reality, augmented reality, and cyber security datasets for smart agriculture) are described as the future research directions of smart agriculture.

     

  • loading
  • Recommended by Associate Editor MengChu Zhou.
  • [1]
    L. Ma, H. Long, Y. Zhang, S. Tu, D. Ge, and X. Tu, "Agricultural labor changes and agricultural economic development in China and their implications for rural vitalization, "J. Geogr. Sci., vol. 29, no. 2, pp. 163-179, 2019.
    [2]
    Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, "From industry 4.0 to agriculture 4.0: current status, enabling technologies, and research challenges, " IEEE Trans. Ind. Informat., 2020. DOI: 10.1109/TⅡ.2020.3003910
    [3]
    M. S. Mekala and P. Viswanathan, "A survey: smart agriculture IoT with cloud computing, " in Prof. Int. Conf. Microelectronic Devices, Circuits and Systems. Vellore, India: IEEE, 2017, pp. 1-7.
    [4]
    N. Gondchawar and R. Kawitkar, "IoT based smart agriculture, " Int. J. Adv. Res. Comput. Commun. Eng., vol. 5, no. 6, pp. 838-842, 2016.
    [5]
    A. Antonacci, F. Arduini, D. Moscone, G. Palleschi, and V. Scognamiglio, "Nanostructured (bio) sensors for smart agriculture, " Trends Analyt. Chem., vol. 98, pp. 95-103, 2018.
    [6]
    P. P. Ray, "Internet of things for smart agriculture: Technologies, practices and future direction, " J. Ambient Intell. Smart Environ., vol. 9, no. 4, pp. 395-420, 2017. http://www.researchgate.net/publication/317593389_Internet_of_things_for_smart_agriculture_Technologies_practices_and_future_direction
    [7]
    O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, "An overview of Internet of Things (IoT) and data analytics in agriculture: benefits and challenges, " IEEE Internet Things J., vol. 5, no. 5, pp. 3758-3773, 2018. http://ieeexplore.ieee.org/document/8372905/
    [8]
    A. Khanna and S. Kaur, "Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture, " Comput. Electron. Agric., vol. 157, pp. 218-231, 2019. http://agri.ckcest.cn/file1/M00/06/80/Csgk0F0HhQCAGjWGAB9-FWWmdag433.pdf
    [9]
    M. Bacco, P. Barsocchi, E. Ferro, A. Gotta, and M. Ruggeri, "The digitisation of agriculture: a survey of research activities on smart farming, " Array, vol. 3, p. 100009, 2019.
    [10]
    S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt, "Big data in smart farming-A review, " Agric. Syst., vol. 153, pp. 69-80, 2017. doi: 10.1016/j.compag.2017.09.037
    [11]
    M. Bacco, A. Berton, E. Ferro, C. Gennaro, A. Gotta, S. Matteoli, F. Paonessa, M. Ruggeri, G. Virone, and A. Zanella, "Smart farming: opportunities, challenges and technology enablers, " in Proc. IoT Vertical and Topical Summit on Agriculture. Tuscany, Italy: IEEE, 2018, pp. 1-6.
    [12]
    C. Makate, "Effective scaling of climate smart agriculture innovations in African smallholder agriculture: a review of approaches, policy and institutional strategy needs, " Environ. Sci. Policy, vol. 96, pp. 37-51, 2019.
    [13]
    E. Totin, A. C. Segnon, M. Schut, H. D. Affognon, R. B. Zougmore, T. S. Rosenstock, and P. K. Thornton, "Institutional perspectives of climate-smart agriculture: a systematic literature review, " Sustain., vol. 10, no. 6, p. 1990, 2018.
    [14]
    M. Ayaz, M. Ammaduddin, Z. Sharif, A. Mansour, and E. M. Aggoune, "Internet-of-things IoT-based smart agriculture: toward making the fields talk, " IEEE Access, vol. 7, pp. 129 551-129 583, 2019.
    [15]
    M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, "Security and privacy for green IoT-based agriculture: review, blockchain solutions, and challenges, " IEEE Access, vol. 8, pp. 32 031-32 053, 2020. http://ieeexplore.ieee.org/document/8993722
    [16]
    M. Gupta, M. Abdelsalam, S. Khorsandroo, and S. Mittal, "Security and privacy in smart farming: challenges and opportunities, " IEEE Access, vol. 8, pp. 34 564-34 584, 2020.
    [17]
    L. Barreto and A. Amaral, "Smart farming: cyber security challenges, " in Proc. Int. Conf. Intelligent Systems. Madeira, Portugal: IEEE, 2018, pp. 870-876.
    [18]
    J. West, "A prediction model framework for cyber-attacks to precision agriculture technologies, " J. Agric. Food Inf., vol. 19, no. 4, pp. 307-330, 2018.
    [19]
    H. Khalid, U. D. Ikram, A. Ahmad, and I. Naveed, "An energy efficient and secure IoT-based wsn framework: an application to smart agriculture, " Sensors, vol. 20, no. 7, p. 2081, 2020. http://www.researchgate.net/publication/340488305_An_Energy_Efficient_and_Secure_IoT-based_WSN_Framework_An_application_to_Smart_Agriculture
    [20]
    M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, "A survey on the role of IoT in agriculture for the implementation of smart farming, " IEEE Access, vol. 7, pp. 156 237-156 271, 2019.
    [21]
    O. Koksal and B. Tekinerdogan, "Architecture design approach for IoT-based farm management information systems, " Precis. Agric., vol. 20, no. 5, pp. 926-958, 2019.
    [22]
    T. Malche, P. Maheshwary, and R. Kumar, "Environmental monitoring system for smart city based on secure Internet of Things (IoT) architecture, " Wirel. Pers. Commun., vol. 107, no. 4, pp. 2143-2172, 2019. doi: 10.1007/s11277-019-06376-0
    [23]
    M. S. Munir, I. S. Bajwa, and S. M. Cheema, "An intelligent and secure smart watering system using fuzzy logic and blockchain, " Comput. Electr. Eng., vol. 77, pp. 109-119, 2019.
    [24]
    E. C. Ferrer, "The blockchain: a new framework for robotic swarm systems, " in Proc. Future Technologies Conf. Cham: Springer, 2017, pp. 1037-1058.
    [25]
    K. Huang, K. Li, L. Shu, and X. Yang, "Demo abstract: high voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things, " in IEEE Int. Conf. Computer Communications. Virtual conference: IEEE, 2020.
    [26]
    K. Huang, K. Li, L. Shu, X. Yang, T. Gordon, and X. Wang, "High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things, " IEEE Wireless Commun., pp. 1-6, 2020. DOI: 10.1109/MWC.001.2000082
    [27]
    N. Zhang, M. Wang, and N. Wang, "Precision agriculture-a worldwide overview, " Comput. Electron. Agric., vol. 36, no. 36, pp. 113-132, 2002.
    [28]
    L. Zhou, L. Song, C. Xie, and J. Zhang, "Applications of Internet of Things in the facility agriculture, " in Computer and Computing Technologies in Agriculture Ⅵ. Berlin, Heidelberg: Springer, 2012, pp. 297-303.
    [29]
    M. F. Bellemare and J. R. Bloem, "Does contract farming improve welfare? a review, " World Dev., vol. 112, pp. 259-271, 2018.
    [30]
    M. Srbinovska, C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, "Environmental parameters monitoring in precision agriculture using wireless sensor networks, " J. Clean. Prod., vol. 88, pp. 297-307, 2015.
    [31]
    D. D. Wu, D. L. Olson, and J. R. Birge, "Risk management in cleaner production, " J. Clean. Prod., vol. 53, pp. 1-6, 2013.
    [32]
    V. V. hari Ram, H. Vishal, S. Dhanalakshmi, and P. M. Vidya, "Regulation of water in agriculture field using internet of things, " in Proc. IEEE Technological Innovation in ICT for Agriculture and Rural Development. Chennai, India: IEEE, 2015, pp. 112-115.
    [33]
    Y. Lin, J. R. Petway, J. Anthony, H. Mukhtar, S. Liao, C. Chou, and Y. Ho, "Blockchain: the evolutionary next step for ICT e-agriculture, " Environ., vol. 4, no. 3, p. 50, 2017.
    [34]
    D. Dalohoun, A. Hall, and P. Van Mele, "Entrepreneurship as driver of a "self- organizing system of innovation": the case of nerica in benin, " Int. J. Technol. Manag. Sustain. Dev., vol. 8, no. 2, pp. 87-101, 2009.
    [35]
    M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, "Blockchain-based traceability in agri-food supply chain management: a practical implementation, " in Proc. IoT Vertical and Topical Summit on Agriculture. Tuscany, Italy: IEEE, 2018, pp. 1-4.
    [36]
    K. Leng, Y. Bi, L. Jing, H. Fu, and I. Van Nieuwenhuyse, "Research on agricultural supply chain system with double chain architecture based on blockchain technology, " Future Gener. Comput. Syst., vol. 86, pp. 641-649, 2018.
    [37]
    J. Hua, X. Wang, M. Kang, H. Wang, and F.-Y. Wang, "Blockchain based provenance for agricultural products: a distributed platform with duplicated and shared bookkeeping, " in Proc. IEEE Intelligent Vehicles Symp. Changshu, China: IEEE, 2018, pp. 97-101.
    [38]
    A. Villahenriksen, G. T. C. Edwards, L. Pesonen, O. Green, and C. G. Sorensen, "Internet of things in arable farming: implementation, applications, challenges and potential, " Biosyst. Eng., vol. 191, pp. 60-84, 2020.
    [39]
    S. Wang, Y. Lin, Y. Qin, and C. Chen, "Security enhancement of internet of things using service level agreements and lightweight security, " in Advances in Information and Communication Networks. Springer, 2018, pp. 221-235.
    [40]
    A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, "Internet of things in agriculture, recent advances and future challenges, " Biosyst. Eng., vol. 164, pp. 31-48, 2017.
    [41]
    J. P. S. Sundaram, W. Du, and Z. Zhao, "A survey on lora networking: Research problems, current solutions, and open issues, " IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 371-388, 2019.
    [42]
    Z. Zong, R. Fares, B. Romoser, and J. Wood, "Faststor: improving the performance of a large scale hybrid storage system via caching and prefetching, " Cluster Comput., vol. 17, no. 2, pp. 593-604, 2014.
    [43]
    X. Li, S. Chen, and L. Guo, "Technological innovation of agricultural information service in the age of big data, " J. Agric. Sci. Technol., vol. 16, no. 4, pp. 10-15, 2014.
    [44]
    D. Ko, Y. Kwak, and S. Song, "Real time traceability and monitoring system for agricultural products based on wireless sensor network, " Int. J. Distrib. Sens. Netw., vol. 10, no. 6, p. 832510, 2014.
    [45]
    S. Kang, X. Hao, T. Du, L. Tong, X. Su, H. Lu, X. Li, Z. Huo, S. Li, and R. Ding, "Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice, " Agric. Water Manag., vol. 179, pp. 5-17, 2017.
    [46]
    J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, and P. Nillaor, "IoT and agriculture data analysis for smart farm, " Comput. Electron. Agric., vol. 156, pp. 467-474, 2019.
    [47]
    P. Edwards, W. Zhang, B. Belton, and D. C. Little, "Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported, " Mar. Policy, vol. 106, p. 103547, 2019.
    [48]
    A. J. Embug, A. A. A. Ibrahim, M. Hamzah, and M. F. Asli, "A review on visual water quality monitoring system in precision aquaculture, " in Appl. Mech. Mater., vol. 892. Trans Tech Publ, 2019, pp. 23-30.
    [49]
    J. Trevathan and R. Johnstone, "Smart environmental monitoring and assessment technologies (semat) - a new paradigm for low-cost, remote aquatic environmental monitoring, " Sensors, vol. 18, no. 7, p. 2248, 2018.
    [50]
    C. Dupont, P. Cousin, and S. Dupont, "IoT for aquaculture 4.0 smart and easy-to-deploy real-time water monitoring with IoT, " in Proc. Global Internet of Things Summit. Bilbao, Spain: IEEE, 2018, pp. 1-5.
    [51]
    F. Li, Q. Liu, S. Dong, and H. Cheng, "Agricultural development status and key cooperation directions between China and countries along "the belt and road", " in Proc. IOP Conf. Series: Earth and Environmental Science, vol. 190, no. 1. Irkutsk, Russia: IOP Publishing, 2018, p.012058.
    [52]
    M. Ariff and I. Ismail, "Rfid application development for a livestock monitoring system, " in Bioresources Technology in Sustainable Agriculture. Apple Academic Press, 2018, pp. 81-94.
    [53]
    I. Halachmi, M. Guarino, J. Bewley, and M. Pastell, "Smart animal agriculture: application of real-time sensors to improve animal wellbeing and production, " Annu. Rev. Anim. Biosci., vol. 7, pp. 403-425, 2019.
    [54]
    X. Shi, X. An, Q. Zhao, H. Liu, L. Xia, X. Sun, and Y. Guo, "State-of-the-art internet of things in protected agriculture, " Sensors, vol. 19, no. 8, p. 1833, 2019.
    [55]
    M. Kang, X.-R. Fan, J. Hua, H. Wang, X. Wang, and F.-Y. Wang, "Managing traditional solar greenhouse with CPSS: a just-for-fit philosophy, " IEEE Trans. Syst., Man, Cybern., vol. 48, no. 12, pp. 3371-3380, 2018.
    [56]
    M. A. Akkas and R. Sokullu, "An IoT-based greenhouse monitoring system with micaz motes, " Procedia Comput. Sci., vol. 113, pp. 603-608, 2017.
    [57]
    T. Kozai, "Resource use efficiency of closed plant production system with artificial light: concept, estimation and application to plant factory, " Proc. Japan Academy, Series B, vol. 89, no. 10, pp. 447-461, 2013.
    [58]
    W. Hu, C. Lin, C. Yang, and M. Hwang, "A framework of the intelligent plant factory system, " Procedia Comput. Sci., vol. 131, pp. 579-584, 2018.
    [59]
    F. Ijaz, A. A. Siddiqui, B. K. Im, and C. Lee, "Remote management and control system for led based plant factory using ZigBee and internet, " in Proc. 14th Int. Conf. Advanced Communication Technology. PyeongChang, South Korea: IEEE, 2012, pp. 942-946.
    [60]
    R. R Shamshiri, F. Kalantari, K. C. Ting, K. R. Thorp, I. A. Hameed, C. Weltzien, D. Ahmad, and Z. M. Shad, "Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture, " Int. J. Agric. Biol. Eng., vol. 11, no. 1, pp. 1-22, 2018.
    [61]
    D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, "The role of renewable energy in the global energy transformation, " Energy Strategy Rev., vol. 24, pp. 38-50, 2019.
    [62]
    E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, and K.-H. Kim, "Solar energy: potential and future prospects, " Renew. Sust. Energ. Rev., vol. 82, pp. 894-900, 2018.
    [63]
    N. M. Shatar, M. A. A. A. Rahman, S. A. Z. S. Salim, M. H. M. Ariff, M. N. Muhtazaruddin, and A. K. A. Badlisah, "Design of photovoltaic-thermoelectric generator (PV-TEG) hybrid system for precision agriculture, " in Proc. IEEE 7th Int. Conf. Power and Energy. Kuala Lumpur, Malaysia: IEEE, 2018, pp. 50-55.
    [64]
    M. Bey, A. Hamidat, B. Benyoucef, and T. Nacer, "Viability study of the use of grid connected photovoltaic system in agriculture: case of Algerian dairy farms, " Renew. Sust. Energ. Rev., vol. 63, pp. 333-345, 2016.
    [65]
    N. M. Kumar, K. Atluri, and S. Palaparthi, "Internet of Things (IoT) in photovoltaic systems, " in Proc. National Power Engineering Conf. Madurai, India: IEEE, 2018, pp. 1-4.
    [66]
    F. M. Enescu, N. Bizon, A. Onu, M. S. Raboaca, P. Thounthong, A. G. Mazare, and G. Serban, "Implementing blockchain technology in irrigation systems that integrate photovoltaic energy generation systems, " Sustain., vol. 12, no. 4, p. 1540, 2020.
    [67]
    F. Yang, L. Shu, Y. Liu, K. Li, K. Huang, Y. Zhang, and Y. Sun, "Poster: photovoltaic agricultural internet of things the next generation of smart farming, " in Proc. Int. Conf. Embedded Wireless Systems and Networks, 2019, pp. 236-237.
    [68]
    K. Huang, L. Shu, K. Li, F. Yang, G. Han, X. Wang, and S. Pearson, "Photovoltaic agricultural internet of things towards realizing the next generation of smart farming, " IEEE Access, 2020. http://ieeexplore.ieee.org/document/9072126/
    [69]
    K. Li, L. Shu, K. Huang, Y. Sun, F. Yang, Y. Zhang, Z. Huo, Y. Wang, X. Wang, Q. Lu et al., "Research and prospect of solar insecticidal lamps internet of things, " Smart Agric., vol. 1, no. 3, p. 13, 2019.
    [70]
    F. Yang, L. Shu, K. Huang, K. Li, G. Han, and Y. Liu, "A partition-based node deployment strategy in solar insecticidal lamps Internet of Things, " IEEE Internet Things J., vol. 7, no. 11, pp. 11 223-11 237, 2020.
    [71]
    X. Yang, L. Shu, K. Huang, Z. Huo, Y. Wang, X. Wang, Q. Lu, and Y. Zhang, "Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps internet of things, " Smart Agric., vol. 2, no. 2, pp. 11-27, 2020.
    [72]
    S. Li, A. L. Simonian, and B. A. Chin, "Sensors for agriculture and the food industry, " Electrochem. Soc. Interface, vol. 19, no. 4, pp. 41-46, 2010.
    [73]
    A. O. Onojeghuo, G. A. Blackburn, J. Huang, D. Kindred, and W. Huang, "Applications of satellite "hyper-sensing" in chinese agriculture: challenges and opportunities, " Int. J. Appl. Earth Obs. Geoinf., vol. 64, pp. 62-86, 2018.
    [74]
    D. J. Mulla, "Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps, " Biosyst. Eng., vol. 114, no. 4, pp. 358-371, 2013.
    [75]
    Z. Chen, H. Pan, C. Liu, Z. Jiang, "Chapter 7-agricultural remote sensing and data science in China, " in Federal Data Science, Academic Press, 2018, pp. 95-108. Available: http://www.sciencedirect.com/\\science/article/pii/B9780128124437000077
    [76]
    K. Ota, M. Dong, J. Gui, and A. Liu, "Quoin: incentive mechanisms for crowd sensing networks, " IEEE Netw., vol. 32, no. 2, pp. 114-119, 2018.
    [77]
    Y. Sun, W. Ding, L. Shu, K. Huang, K. Li, Y. Zhang, and Z. Huo, "When mobile crowd sensing meets smart agriculture: poster, " in Proc. ACM Turing Celebration Conference, 2019, pp. 1-2.
    [78]
    A. Ginige and J. Sivagnanasundaram, "Enhancing agricultural sustainability through crowdsensing: a smart computing approach, " J. Adv. Agric. Technol. , vol, vol. 6, no. 3, pp. 161-165, 2019.
    [79]
    Y. Wang, X. Jia, Q. Jin, and J. Ma, "Mobile crowdsourcing: framework, challenges, and solutions, " Concurr. Comput., vol. 29, no. 3, p. e3789, 2017.
    [80]
    L. Huning, J. Bauer, and N. Aschenbruck, "A privacy preserving mobile crowdsensing architecture for a smart farming application, " in Proc. First ACM Workshop on Mobile Crowdsensing Systems and Application. Delft, Netherlands: ACM, 2017, pp. 62-67.
    [81]
    D. Reynolds, J. Ball, A. Bauer, R. Davey, S. Griffiths, and J. Zhou, "Cropsight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management, " Gigascience, vol. 8, no. 3, p. giz009, 2019.
    [82]
    A. Adamblondon, M. Alaux, C. Pommier, D. Cantu, Z. Cheng, G. R. Cramer, C. Davies, S. Delrot, L. Deluc, G. Di Gaspero et al., "Towards an open grapevine information system, " Hort. Res., vol. 3, no. 1, pp. 1-8, 2016.
    [83]
    R. Shrestha, L. Matteis, M. Skofic, A. Portugal, G. McLaren, G. Hyman, and E. Arnaud, "Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the crop ontology developed by the crop communities of practice, " Front. Physiol., vol. 3, p. 326, 2012.
    [84]
    Y.-F. Li, G. Kennedy, F. Ngoran, P. Wu, and J. Hunter, "An ontology-centric architecture for extensible scientific data management systems, " Future Gener. Comput. Syst., vol. 29, no. 2, pp. 641-653, 2013.
    [85]
    M. W. Libbrecht and W. S. Noble, "Machine learning applications in genetics and genomics, " Nat. Rev. Genet., vol. 16, no. 6, pp. 321-332, 2015.
    [86]
    P. J. Navarro, F. Perez, J. Weiss, and M. Egeacortines, "Machine learning and computer vision system for phenotype data acquisition and analysis in plants, " Sensors, vol. 16, no. 5, p. 641, 2016.
    [87]
    J. R. Ubbens and I. Stavness, "Deep plant phenomics: a deep learning platform for complex plant phenotyping tasks, " Front. Plant Sci., vol. 8, p. 1190, 2017.
    [88]
    X. Huang, D. Ye, R. Yu, and L. Shu, "Securing parked vehicle assisted fog computing with blockchain and optimal smart contract design, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 426-441, 2020.
    [89]
    S. Roy, M. Ashaduzzaman, M. Hassan, and A. R. Chowdhury, "Blockchain for IoT security and management: current prospects, challenges and future directions, " in Proc. 5th Int. Conf. Networking, Systems and Security. Dhaka, Banglades: IEEE, 2018, pp. 1-9.
    [90]
    J. F. Galvez, J. Mejuto, and J. Simal-Gandara, "Future challenges on the use of blockchain for food traceability analysis, " Trends Analyt. Chem., vol. 107, pp. 222-232, 2018.
    [91]
    J. Lin, Z. Shen, A. Zhang, and Y. Chai, "Blockchain and IoT based food traceability for smart agriculture, " in Proc. 3rd Int. Conf. Crowd Science and Engineering. Singapore: ACM, 2018, pp. 1-6.
    [92]
    O. Bermeo-Almeida, M. Cardenas-Rodriguez, T. Samaniego-Cobo, E. Ferruzola-Gomez, R. Cabezas-Cabezas, and W. Bazan-Vera, "Blockchain in agriculture: a systematic literature review, " in Technologies and Innovation, Cham, 2018, pp. 44-56.
    [93]
    Y. Cheng, K. Chen, H. Sun, Y. Zhang, and F. Tao, "Data and knowledge mining with big data towards smart production, " J. Ind. Inf. Integration, vol. 9, pp. 1-13, 2018.
    [94]
    M. G. Jonathan, "The need for fuzzy AI, " IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 610-622, 2019.
    [95]
    K. Jha, A. Doshi, P. Patel, and M. Shah, "A comprehensive review on automation in agriculture using artificial intelligence, " Artif. Intell. Agric., vol. 2, pp. 1-12, 2019.
    [96]
    M. Z. Kang and F.-Y. Wang, "From parallel plants to smart plants: intelligent control and management for plant growth, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 161-166, 2017.
    [97]
    E. Alreshidi, "Smart Sustainable Agriculture (SSA) solution underpinned by Internet of Things (IoT) and Artificial Intelligence (AI), " Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, 2019. Available: http://dx.doi.org/10.14569/IJACSA.2019.0100513
    [98]
    M. Ghahramani, M. Zhou, and C. T. Hon, "Toward cloud computing QoS architecture: analysis of cloud systems and cloud services, " IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6-18, 2017.
    [99]
    W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: vision and challenges, " IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, 2016.
    [100]
    D. Fan and S. Gao, "The application of mobile edge computing in agricultural water monitoring system, " in Proc. 4th Int. Conf. Water Resource and Environment, vol. 191, no. 1. Kaohsiung, China: IOP Publishing, 2018, p. 012015.
    [101]
    K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, "Mobile edge computing and networking for green and low-latency internet of things, " IEEE Commun. Mag., vol. 56, no. 5, pp. 39-45, 2018.
    [102]
    F. J. Ferrandez-Pastor, J. M. Garcia-Chamizo, M. Nieto-Hidalgo, and J. Mora-Martinez, "Precision agriculture design method using a distributed computing architecture on internet of things context, " Sensors, vol. 18, no. 6, p. 1731, 2018.
    [103]
    L. Wang, Y. Lan, Y. Zhang, H. Zhang, M. N. Tahir, S. Ou, X. Liu, and P. Chen, "Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China, " Sensors, vol. 19, no. 3, p. 642, 2019.
    [104]
    Y. Lan and S. Chen, "Current status and trends of plant protection uav and its spraying technology in China, " Int. J. Precis. Agric. Aviat., vol. 1, no. 1, pp. 1-9, 2018.
    [105]
    S. Fountas, C. G. Sorensen, Z. Tsiropoulos, C. Cavalaris, V. Liakos, and T. Gemtos, "Farm machinery management information system, " Comput. Electron. Agric., vol. 110, pp. 131-138, 2015.
    [106]
    A. S. Matveev, M. Hoy, J. Katupitiya, and A. V. Savkin, "Nonlinear sliding mode control of an unmanned agricultural tractor in the presence of sliding and control saturation, " Robot. Auton. Syst., vol. 61, no. 9, pp. 973-987, 2013.
    [107]
    R. Bogue, "Robots poised to revolutionise agriculture, " Ind. Robot Int. J., vol. 43, no. 5, pp. 450-456, 2016.
    [108]
    R. Keicher and H. Seufert, "Automatic guidance for agricultural vehicles in Europe, " Comput. Electron. Agric., vol. 25, no. 1-2, pp. 169-194, 2000.
    [109]
    J. F. Reid, Q. Zhang, N. Noguchi, and M. Dickson, "Agricultural automatic guidance research in North America, " Comput. Electron. Agric., vol. 25, no. 1-2, pp. 155-167, 2000.
    [110]
    T. Liu, B. Tian, Y. Ai, and F.-Y. Wang, "Parallel reinforcement learning-based energy efficiency improvement for a cyber-physical system, " IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 617-626, 2020.
    [111]
    H. Lee, D. Kang, J. Ryu, D. Won, H. Kim, and Y. Lee, "A three-factor anonymous user authentication scheme for internet of things environments, " J. Inf. Secur. Appl., vol. 52, p. 102494, 2020.
    [112]
    A. Gauhar, N. Ahmad, Y. Cao, S. Khan, H. Cruickshank, E. A. Qazi, and A. Ali, "xdbauth: blockchain based cross domain authentication and authorization framework for internet of things, " IEEE Access, vol. 8, pp. 58 800-58 816, 2020.
    [113]
    S. Shin and T. Kwon, "A privacy-preserving authentication, authorization, and key agreement scheme for wireless sensor networks in 5gintegrated internet of things, " IEEE Access, vol. 8, pp. 67 555-67 571, 2020.
    [114]
    X. Wang, M. Umehira, B. Han, H. Zhou, P. Li, and C. Wu, "An efficient privacy preserving spectrum sharing framework for internet of things, " IEEE Access, vol. 8, pp. 34 675-34 685, 2020.
    [115]
    J. Wei, T. V. X. Phuong, and G. Yang, "An efficient privacy preserving message authentication scheme for internet-of-things, " IEEE Trans. Ind. Informat., 2020. http://ieeexplore.ieee.org/document/8988199
    [116]
    J. Zhang, Y. Zhao, J. Wu, and B. Chen, "LVPDA: a lightweight and verifiable privacy-preserving data aggregation scheme for edge-enabled IoT, " IEEE Internet Things J., vol. 7, no. 5, pp. 4016-4027, 2020.
    [117]
    M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, and H. Janicke, "Rdtids: rules and decision tree-based intrusion detection system for internet-of-things networks, " Future Internet, vol. 12, no. 3, p. 44, 2020.
    [118]
    L. Hang, I. Ullah, and D.-H. Kim, "A secure fish farm platform based on blockchain for agriculture data integrity, " Comput. Electron. Agric., vol. 170, p. 105251, 2020. http://www.sciencedirect.com/science/article/pii/S016816991932006X
    [119]
    A. Shahid, A. Almogren, N. Javaid, F. A. Al-Zahrani, M. Zuair, and M. Alam, "Blockchain-based agri-food supply chain: a complete solution, " IEEE Access, vol. 8, pp. 69 230-69 243, 2020. http://ieeexplore.ieee.org/document/9058674
    [120]
    E. Anthi, L. Williams, M. S?owinska, G. Theodorakopoulos, and P. Burnap, "A supervised intrusion detection system for smart home IoT devices, " IEEE Internet Things J., vol. 6, no. 5, pp. 9042-9053, 2019. http://ieeexplore.ieee.org/document/8753563/
    [121]
    F. Li, Y. Shi, A. Shinde, J. Ye, and W. Song, "Enhanced cyber-physical security in internet of things through energy auditing, " IEEE Internet Things J., vol. 6, no. 3, pp. 5224-5231, 2019. http://ieeexplore.ieee.org/document/8642398
    [122]
    A. Ahmim, M. Derdour, and M. A. Ferrag, "An intrusion detection system based on combining probability predictions of a tree of classifiers, " Int. J. Commun. Systems, vol. 31, no. 9, pp. e3547.1-e3547.17, 2018. doi: 10.1002/dac.3547
    [123]
    C. Esposito, M. Ficco, A. Castiglione, F. Palmieri, and A. De Santis, "Distributed group key management for event notification confidentiality among sensors, " IEEE Trans. Dependable Secure Comput., vol. 17, no. 3, pp. 566-580, 2018. http://ieeexplore.ieee.org/document/8274911/references
    [124]
    B. Ali and A. I. Awad, "Cyber and physical security vulnerability assessment for IoT-based smart homes, " Sensors, vol. 18, no. 3, p. 817, 2018. http://europepmc.org/articles/PMC5876893/
    [125]
    M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti, and M. Jo, "Design of secure user authenticated key management protocol for generic IoT networks, " IEEE Internet Things J., vol. 5, no. 1, pp. 269-282, 2017.
    [126]
    A. Sforzin, F. G. Mármol, M. Conti, and J.-M. Bohli, "Rpids: Raspberry pi ids-a fruitful intrusion detection system for IoT, " in Proc. Int. IEEE Conf. Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress. Toulouse, France: IEEE, 2016, pp. 440-448.
    [127]
    A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke, "A novel hierarchical intrusion detection system based on decision tree and rules-based models, " in Proc. 15th Int. Conf. Distributed Computing in Sensor Systems. Santorini Island, Greece: IEEE, 2019, pp. 228-233.
    [128]
    M. M. Joe and B. Ramakrishnan, "Novel authentication procedures for preventing unauthorized access in social networks, " Peer Peer Netw. Appl., vol. 10, no. 4, pp. 833-843, 2017. doi: 10.1007/s12083-016-0426-7
    [129]
    T. Fukami, Y. Abe, T. Shimada, and B. Ishikawa, "Authentication system preventing unauthorized access of a third person based on steady state visual evoked potentials, " Int. J. Innov. Comput. Inf. Control., vol. 14, no. 6, pp. 2091-2100, 2018. http://www.researchgate.net/publication/328702956_Authentication_system_preventing_unauthorized_access_of_a_third_person_based_on_steady_state_visual_evoked_potentials
    [130]
    N. D. Milosevic, J. A. Anastasov, A. M. Cvetkovic, D. M. Milovic, and D. N. Milic, "On the intercept probability of df relaying wireless communication, " Wirel. Pers. Commun., vol. 104, no. 4, pp. 1523-1533, 2019. doi: 10.1007/s11277-018-6096-4
    [131]
    Y. Zou and G. Wang, "Intercept behavior analysis of industrial wireless sensor networks in the presence of eavesdropping attack, " IEEE Trans. Ind. Informat., vol. 12, no. 2, pp. 780-787, 2015. http://ieeexplore.ieee.org/document/7029608
    [132]
    F. Jameel, Z. Chang, and T. Ristaniemi, "Intercept probability analysis of wireless powered relay system in kappa-mu fading, " in Proc. IEEE 87th Vehicular Technology Conference. Porto, Portugal: IEEE, 2018, pp. 1-6.
    [133]
    J. Milosevic, A. Teixeira, K. H. Johansson, and H. Sandberg, "Actuator security indices based on perfect undetectability: computation, robustness, and sensor placement, " IEEE Trans. Automat. Contr., pp. 3816-3831, 2020. http://arxiv.org/abs/1807.04069v2
    [134]
    A. Alromih, M. Alrodhaan, and Y. Tian, "A randomized watermarking technique for detecting malicious data injection attacks in heterogeneous wireless sensor networks for internet of things applications, " Sensors, vol. 18, no. 12, p. 4346, 2018. http://www.researchgate.net/publication/329035770_A_Randomized_Watermarking_Technique_for_Detecting_Malicious_Data_Injection_Attacks_in_Heterogeneous_Wireless_Sensor_Networks_for_Internet_of_Things_Applications
    [135]
    L. Che, X. Liu, and Z. Li, "Mitigating false data attacks induced overloads using a corrective dispatch scheme, " IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3081-3091, 2018. http://ieeexplore.ieee.org/document/8320325/
    [136]
    K. Mahapatra and N. R. Chaudhuri, "Online robust PCA for malicious attack-resilience in wide-area mode metering application, " IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2598-2610, 2019. http://ieeexplore.ieee.org/document/8626487
    [137]
    A. W. Aldabbagh, Y. Li, and T. Chen, "An intrusion detection system for cyber attacks in wireless networked control systems, " IEEE Trans. Circuits Syst. Ⅱ, vol. 65, no. 8, pp. 1049-1053, 2017. http://ieeexplore.ieee.org/document/7891998
    [138]
    D. Kim, D. Shin, and D. Shin, "Unauthorized access point detection using machine learning algorithms for information protection, " in Proc. 17th IEEE Int. Conf. Trust, Security And Privacy In Computing And Communications/ 12th IEEE Int. Conf. Big Data Science And Engineering, 2018, pp. 1876-1878.
    [139]
    X. Ding, T. Song, Y. Zou, and X. Chen, "Intercept probability analysis of relay selection for wireless communications in the presence of multiple eavesdroppers, " in Proc. IEEE Wireless Communications and Networking Conf.. Doha, Qatar: IEEE, 2016, pp. 1-6.
    [140]
    M. Mohamed, B. Shrestha, and N. Saxena, "Smashed: sniffing and manipulating android sensor data for offensive purposes, " IEEE Trans. Inf. Forensics Security, vol. 12, no. 4, pp. 901-913, 2016. http://ieeexplore.ieee.org/document/7605458
    [141]
    A. S. Bretas, N. G. Bretas, B. Carvalho, E. Baeyens, and P. P. Khargonekar, "Smart grids cyber-physical security as a malicious data attack: An innovation approach, " Electr. Power Syst. Res., vol. 149, pp. 210-219, 2017. http://www.sciencedirect.com/science/article/pii/S0378779617301657
    [142]
    J. Cui, L. Shao, H. Zhong, Y. Xu, and L. Liu, "Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks, " Peer Peer Netw. Appl., vol. 11, no. 5, pp. 1022-1037, 2018. doi: 10.1007/s12083-017-0581-5
    [143]
    G. K. Ndonda and R. Sadre, "A two-level intrusion detection system for industrial control system networks using P4, " in Proc. 5th Int. Symp. ICS & SCADA Cyber Security Research. University of Hamburg, Germany: Electronic Workshops in Computing, 2018, pp. 31-40.
    [144]
    W. Shang, P. Zeng, M. Wan, L. Li, and P. An, "Intrusion detection algorithm based on ocsvm in industrial control system, " Secur. Commun. Netw., vol. 9, no. 10, pp. 1040-1049, 2016. doi: 10.1002/sec.1398
    [145]
    Y. Wang, K. Fan, Y. Lai, Z. Liu, R. Zhou, X. Yao, and L. Li, "Intrusion detection of industrial control system based on modbus TCP protocol, " in Proc. IEEE 13th Int. Symp. Autonomous Decentralized System. Bangkok, Thailand: IEEE, 2017, pp. 156-162.
    [146]
    K. Rumyantsev and A. Pljonkin, "Preliminary stage synchronization algorithm of auto-compensation quantum key distribution system with an unauthorized access security, " in Proc. Int. Conf. Electronics, Information, and Communications. Da Nang, Vietnam: IEEE, 2016, pp. 1-4.
    [147]
    S. Teng, N. Wu, H. Zhu, L. Teng, and W. Zhang, "SVM-DT-based adaptive and collaborative intrusion detection, " IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 108-118, 2018. http://www.cnki.com.cn/Article/CJFDTotal-ZDHB201801011.htm
    [148]
    N. Wang, P. Wang, A. Alipourfanid, L. Jiao, and K. Zeng, "Physical-layer security of 5g wireless networks for IoT: challenges and opportunities, " IEEE Internet Things J., vol. 6, no. 5, pp. 8169-8181, 2019. http://ieeexplore.ieee.org/document/8758230
    [149]
    P. Zhang, M. Zhou, and G. Fortino, "Security and trust issues in fog computing: a survey, " Future Gener. Comput. Syst., vol. 88, pp. 16-27, 2018. http://www.sciencedirect.com/science/article/pii/S0167739X17329722
    [150]
    E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy, "Fog of everything: energy-efficient networked computing architectures, research challenges, and a case study, " IEEE Access, vol. 5, pp. 9882-9910, 2017. http://ieeexplore.ieee.org/document/7921687
    [151]
    B. Huang, Y. Li, H. Zhang, and Q. Sun, "Distributed optimal comulti-microgrids energy management for energy internet, " IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 357-364, 2016. http://www.cnki.com.cn/Article/CJFDTotal-ZDHB201604003.htm
    [152]
    Y. Duan, W. Li, X. Fu, Y. Luo, and L. Yang, "A methodology for reliability of WSN based on software defined network in adaptive industrial environment, " IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 74-82, 2018. http://ieeexplore.ieee.org/document/8232592
    [153]
    T. Huang, S. Yan, F. Yang, and J. Liu, "Multi-domain SDN survivability for agricultural wireless sensor networks, " Sensors, vol. 16, no. 11, p. 1861, 2016. http://europepmc.org/articles/PMC5134520/
    [154]
    I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, "Security in software defined networks: a survey, " IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2317-2346, 2015. http://ieeexplore.ieee.org/document/7226783/
    [155]
    R. Azuma, "A survey of augmented reality, " Presence (Camb), vol. 6, no. 4, pp. 355-385, 1997. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9708264137&site=ehost-live
    [156]
    R. Kim, J. Kim, I. Lee, U. Yeo, and S. Lee, "Development of a VR simulator for educating cfd-computed internal environment of piglet house, " Biosyst. Eng., vol. 188, pp. 243-264, 2019. http://www.sciencedirect.com/science/article/pii/S1537511019308712
    [157]
    V. Figueredo, A. V. dos Reis, F. Garcia, and F. C. Araujo, "Virtual reality for agribusiness in the development of a maintenance simulator for agricultural machinery for senar goias, " in Proc. 21st Symp. Virtual and Augmented Reality, Rio de Janeiro, Brazil, 2019, pp. 17-19.
    [158]
    J. Huuskonen and T. Oksanen, "Soil sampling with drones and augmented reality in precision agriculture, " Comput. Electron. Agric., vol. 154, pp. 25-35, 2018. http://www.sciencedirect.com/science/article/pii/S0168169918301650
    [159]
    M. U. Rafique and S. S. Cheung, "Tracking attacks on virtual reality systems, " IEEE Consum. Electron., vol. 9, no. 2, pp. 41-46, 2020. http://ieeexplore.ieee.org/document/8977814
    [160]
    M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, "Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study, " J. Inf. Secur. Appl., vol. 50, p. 102419, 2020. http://www.sciencedirect.com/science/article/pii/S2214212619305046

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(11)

    Article Metrics

    Article views (11429) PDF downloads(2271) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return