A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 2
Mar.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Yuchi Cao and Tieshan Li, "Review of Antiswing Control of Shipboard Cranes," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 346-354, Mar. 2020. doi: 10.1109/JAS.2020.1003024
Citation: Yuchi Cao and Tieshan Li, "Review of Antiswing Control of Shipboard Cranes," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 346-354, Mar. 2020. doi: 10.1109/JAS.2020.1003024

Review of Antiswing Control of Shipboard Cranes

doi: 10.1109/JAS.2020.1003024
Funds:  This work was supported in part by the National Natural Science Foundation of China (51939001, 61751202, 61803064, 61976033, U1813203), the Fundamental Research Funds for the Central Universities (3132019124, 3132019126, 3132019140), the China Scholarship Council (201903210010), the Natural Science Foundation of Liaoning Province (20170540093, 20180550082), and the Science and Technology Innovation Funds of Dalian (2018J11CY022)
More Information
  • Shipboard cranes are extensively utilized in numerous fields such as cargo transferring and offshore engineering. The control of shipboard cranes, especially the antiswing control of payloads, has attracted much research attention due to their typical underactuation characteristics and complicated dynamics. Through comparisons of the traditional land-fixed cranes, a brief review on modeling and dynamics analysis is presented to illustrate the tremendous challenges and difficulties in controller design for shipboard cranes. A comprehensive review and brief analysis of shipboard crane control strategies are further presented. Some future research directions are also put forward for reference. It is expected that the paper will be useful for improving existing control schemes and generating novel control approaches for shipboard crane systems.

     

  • loading
  • [1]
    L. Ramli, Z. Mohamed, A. M. Abdullahi, H. I. Jaafar, and I. M. Lazim, “Control strategies for crane systems: a comprehensive review,” Mech. Syst. Signal Process, vol. 95, pp. 1–23, Oct. 2017. doi: 10.1016/j.ymssp.2017.03.015
    [2]
    J. Neupert, T. Heinze, O. Sawodny, and K. Schneider, “Observer design for boom cranes with double-pendulum effect,” in Proc. IEEE Control Applications, (CCA) & Intelligent Control, St. Petersburg, Russia, 2009, pp. 1545–1550.
    [3]
    D. W. Qian, S. W. Tong, and S. G. Lee, “Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes,” Autom. Constr., vol. 65, pp. 133–143, May 2016. doi: 10.1016/j.autcon.2015.12.014
    [4]
    J. Huang, E. Maleki, and W. Singhose, “Dynamics and swing control of mobile boom cranes subject to wind disturbances,” IET Control Theory Appl., vol. 7, no. 9, pp. 1187–1195, Jun. 2013. doi: 10.1049/iet-cta.2012.0957
    [5]
    M. J. Maghsoudi, Z. Mohamed, M. O. Tokhi, A. R. Husain, and M. S. Z. Abidin, “Control of a gantry crane using input-shaping schemes with distributed delay,” Trans. Inst. Meas. Control, vol. 39, no. 3, pp. 361–370, Mar. 2017. doi: 10.1177/0142331215607615
    [6]
    H. M. Omar and A. H. Nayfeh, “Anti-swing control of gantry and tower cranes using fuzzy and time-delayed feedback with friction compensation,” Shock Vib., vol. 12, no. 2, pp. 73–89, Jan. 2005. doi: 10.1155/2005/890127
    [7]
    K. Kawada, H. Sogo, and T. Yamamoto, “Gain scheduled PD sway control of a lifted load for a mobile crane,” in Proc. 26th Ann. Conf. IEEE Industrial Electronics Society. IECON 2000. IEEE Int. Conf. Industrial Electronics, Control and Instrumentation. 21st Century Technologies, Nagoya, Japan, 2000, pp. 1743–1748.
    [8]
    H. M. Ouyang, G. M. Zhang, L. Mei, X. Deng, and D. M. Wang, “Load vibration reduction in rotary cranes using robust two-degree-of-freedom control approach,” Adv. Mech. Eng., vol. 8, no. 3, pp. 73–89, Mar. 2016.
    [9]
    D. Jolevski and O. Bego, “Model predictive control of gantry/bridge crane with anti-sway algorithm,” J. Mech. Sci. Technol., vol. 29, no. 2, pp. 827–834, Feb. 2015. doi: 10.1007/s12206-015-0144-8
    [10]
    G. Bartolini, A. Pisano, and E. Usai, “Second-order sliding-mode control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783–1790, Oct. 2002. doi: 10.1016/S0005-1098(02)00081-X
    [11]
    N. Sun, Y. M. Wu, Y. C. Fang, and H. Chen, “Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: design and experiments,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1413–1422, Jul. 2018. doi: 10.1109/TASE.2017.2723539
    [12]
    N. Sun, Y. M. Wu, H. Chen, and Y. C. Fang, “Antiswing cargo transportation of underactuated tower crane systems by a nonlinear controller embedded with an integral term,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1387–1398, Jul. 2019. doi: 10.1109/TASE.2018.2889434
    [13]
    D. W. Qian and J. Q. Yi, Hierarchical Sliding Mode Control for Under-Actuated Cranes: Design, Analysis and Simulation. Heidelberg, Germany: Springer, 2016.
    [14]
    Y. C. Fang, P. C. Wang, N. Sun, and Y. C. Zhang, “Dynamics analysis and nonlinear control of an offshore boom crane,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 414–427, Jan. 2014. doi: 10.1109/TIE.2013.2251731
    [15]
    J. J. Wu, Y. F. Zhang, H. Q. Chen, G. D. Han, and S. H. Wang, “Simulation analysis of the swinging of payload of ship-mounted crane,” in Proc. Int. Conf. Computer Systems, Electronics Control, Dalian, China, 2017, pp. 24–28.
    [16]
    M. M. Idres, K. S. Youssef, D. T. Mook, and A. H. Nayfeh, “A nonlinear 8-DOF coupled crane-ship dynamic model,” in Proc. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Norfolk, Virginia, 2003, pp. 4187-4197.
    [17]
    P. C. Wang, Y. C. Fang, J. L. Xiang, and Z. J. Zhao, “Dynamics analysis and modeling of ship-mounted boom crane,” J. Mech. Eng., vol. 47, no. 20, pp. 34–40, Oct. 2011. doi: 10.3901/JME.2011.20.034
    [18]
    R. M. T. R. Ismail and Q. P. Ha, “Trajectory tracking and anti-sway control of three-dimensional offshore boom cranes using second-order sliding modes,” in Proc. IEEE Int. Conf. Automation Science and Engineering, Madison, USA, 2013, pp. 996–1001.
    [19]
    N. Sun, Y. C. Fang, H. Chen, Y. M. Fu, and B. Lu, “Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 48, no. 10, pp. 1781–1793, Oct. 2018. doi: 10.1109/TSMC.2017.2700393
    [20]
    Y. Z. Qian, Y. C. Fang, and B. Lu, “Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances,” Mech. Syst. Signal Process, vol. 114, pp. 556–570, Jan. 2019. doi: 10.1016/j.ymssp.2018.05.009
    [21]
    Y. Z. Qian and Y. C. Fang, “Switching logic-based nonlinear feedback control of offshore ship-mounted tower cranes: a disturbance observer-based approach,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3, pp. 1125–1136, Jul. 2019. doi: 10.1109/TASE.2018.2872621
    [22]
    Y. Z. Qian and Y. C. Fang, “Dynamics analysis of an offshore ship-mounted crane subject to sea wave disturbances,” in Proc. 12th World Congr. Intelligent Control and Automation, Guilin, China, 2016, pp. 1251–1256.
    [23]
    K. S. Hong and Q. H. Ngo, “Dynamics of the container crane on a mobile harbor,” Ocean Eng., vol. 53, pp. 16–24, Oct. 2012. doi: 10.1016/j.oceaneng.2012.06.013
    [24]
    R. M. T. R. Ismail, N. D. That, and Q. P. Ha, “Modelling and robust trajectory following for offshore container crane systems,” Autom. Constr., vol. 59, pp. 179–187, Nov. 2015. doi: 10.1016/j.autcon.2015.05.003
    [25]
    L. A. Tuan, H. M. Cuong, S. G. Lee, L. C. Nho, and K. Moon, “Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable,” J. Vib. Control, vol. 22, no. 13, pp. 3067–3078, Jul. 2016. doi: 10.1177/1077546314558499
    [26]
    L. A. Tuan, S. G. Lee, L. C. Nho, and H. M. Cuong, “Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable,” Proc. Inst. Mech. Eng. Part I:J. Syst. Control Eng., vol. 229, no. 7, pp. 662–674, Aug. 2015.
    [27]
    G. Parker, M. Graziano, F. Leban, J. Green, and J. D. Bird, “Reducing crane payload swing using a rider block tagline control system,” in OCEANS 2007-Europe, Aberdeen, UK, 2007.
    [28]
    N. K. Ku, J. H. Cha, M. I. Roh, and K. Y. Lee, “A tagline proportional-derivative control method for the anti-swing motion of a heavy load suspended by a floating crane in waves,” Proc. Inst. Mech. Eng.,Part M:J. Eng. Marit. Environ., vol. 227, no. 4, pp. 357–366, Nov. 2013.
    [29]
    G. H. Yuan, B. R. Hunt, C. Grebogi, E. Ott, J. A. Yorke, and E. J. Kosterlich, “Design and control of shipboard cranes,” in Proc. ASME Design Engineering Technical Conf., Sacramento, USA. 1997.
    [30]
    B. Wen, A. Homaifar, M. Bikdash, and B. Kimiaghalam, “Modeling and optimal control design of shipboard crane,” in Proc. American Control Conf., San Diego, USA, 1999, pp. 593–597.
    [31]
    B. Kimiaghalam, A. Homaifar, and M. Bikdash, “Pendulation suppression of a shipboard crane using fuzzy controller,” in Proc. American Control Conf., San Diego, USA, 1999, pp. 586–590.
    [32]
    B. Kimiaghalam, A. Homaifar, M. Bikdash, and B. R. Hunt, “Feedforward control law for a shipboard crane with Maryland rigging system,” J. Vib. Control, vol. 8, no. 2, pp. 159–188, Feb. 2002. doi: 10.1177/107754602023816
    [33]
    B. Kimiaghalam, A. Homaifar, and M. Bikdash, “Feedback and feedforward control law for a ship crane with Maryland rigging system,” in Proc. American Control Conf., Chicago, USA, 2000, pp. 1047–1051.
    [34]
    Y. M. Al-Sweiti and D. Söffker, “Planar cargo control of elastic ship cranes with the “maryland rigging” system,” J. Vib. Control, vol. 13, no. 3, pp. 241–267, Mar. 2007. doi: 10.1177/1077546307078097
    [35]
    M. P. Spathopoulos and D. Fragopoulos, “Pendulation control of an offshore crane,” Int. J. Control, vol. 77, no. 7, pp. 654–670, May 2004. doi: 10.1080/00207170410001703403
    [36]
    M. P. Spathopoulos and D. Fragopoulos, “Control design of a crane for offshore lifting operations,” in Nonlinear Control, A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, Eds. London: Springer, 2001, pp. 469–486.
    [37]
    G. D. Han, T. Zhang, H. Q. Chen, J. N. Zhang, Sheng-hai, and W. Q. Duan, “Sling tray mechanical anti-swing system simulation and modeling of ship-mounted crane,” in Proc. MATEC Web Conf., vol. 104, pp. 02016, 2017.
    [38]
    G. D. Han, T. Zhang, H. Q. Chen, J. N. Zhang, Y. Q. Sun, and S. H. Wang, “Anti-swing device modelling and experiment of ship-mounted crane,” Sci. Technol. Eng., vol. 17, no. 23, pp. 305–310, Aug. 2017.
    [39]
    J. J. Wu, Y. Ji, H. Q. Chen, R. Z. Zhang, S. H. Wang, and T. Zhang, “Design and experiment of disc-type mechanical anti-swing system of ship crane,” Ship Eng., vol. 40, no. 5, pp. 41–45, 67, May 2018.
    [40]
    G. D. Han, T. Zhang, H. Q. Chen, J. N. Zhang, Y. Q. Sun, and S. H. Wang, “Anti-swing device design of ship-mounted crane,” Ship Ocean Eng., vol. 46, no. 6, pp. 38–41, 44, Dec. 2017.
    [41]
    S. H. Wang, Y. Q. Sun, H. Q. Chen, and J. L. Du, “Dynamic modelling and analysis of 3-axis motion compensated offshore cranes,” Ships Offshore Struct., vol. 13, no. 3, pp. 265–272, Apr. 2018. doi: 10.1080/17445302.2017.1360981
    [42]
    M. A. Ahmad, M. S. Ramli, M. A. Zawawi, and R. M. T. R. Ismail, “Hybrid collocated PD with non-collocated PID for sway control of a lab-scaled rotary crane,” in Proc. 5th IEEE Conf. Industrial Electronics Applications, Taichung, China, 2010, pp. 707–711.
    [43]
    M. I. Solihin, Wahyudi, M. A. S. Kamal, and A. Legowo, “Optimal PID controller tuning of automatic gantry crane using PSO algorithm,” in Proc. 5th Int. Symp. Mechatronics and Its Applications, Amman, Jordan, 2008.
    [44]
    H. I. Jaafar, S. Y. S. Hussien, R. Ghazali, and Z. Mohamed, “Optimal tuning of PID+PD controller by PFS for gantry crane system,” in Proc. 10th Asian Control Conf., Kota Kinabalu, Malaysia, 2015.
    [45]
    K. Kawada, H. Sogo, T. Yamamoto, and Y. Mada, “Evolutionary computation in designing a robust PD sway controller for a mobile crane,” in Proc. IEEE Int. Conf. Control Applications, Glasgow, UK, 2002, pp. 868–873.
    [46]
    J. H. Suh, J. W. Lee, Y. J. Lee, and K. S. Lee, “Anti-sway position control of an automated transfer crane based on neural network predictive PID controller,” J. Mech. Sci. Technol., vol. 19, no. 2, pp. 505–519, Feb. 2005. doi: 10.1007/BF02916173
    [47]
    F. Panuncio, W. Yu, and X. O. Li, “Stable neural PID anti-swing control for an overhead crane,” in Proc. IEEE Int. Symp. Intelligent Control, Hyderabad, India, 2013, pp. 53–58.
    [48]
    C. Liu, H. Z. Zhao, and Y. Cui, “Research on application of fuzzy adaptive PID controller in bridge crane control system,” in Proc. 5th IEEE Int. Conf. Software Engineering and Service Science, Beijing, China, 2013, pp. 971–974.
    [49]
    B. C. Xie, Z. Q. Mei, L. W. Yin, and X. G. Li, “Modeling and anti-swaying controller of ship-board crane,” J. Mech. Electr. Eng., vol. 31, no. 8, pp. 1007–1011, Aug. 2014.
    [50]
    L. Q. Yang and L. Z. Song, “Expert PID control of ship-mounted crane pendulation reduction system,” Comput. Simul., vol. 28, no. 10, pp. 161–164, Oct. 2011.
    [51]
    H. S. Park and N. T. Le, “Modeling and controlling the mobile harbour crane system with virtual prototyping technology,” Int. J. Control Autom. Syst., vol. 10, no. 6, pp. 1204–1214, Dec. 2012.
    [52]
    Z. L. Zeng, K. Tian, and W. X. Li, “Neural network PID anti-sway control for shipborne special crane based on compliance,” J. Projectiles,Rockets,Missiles Guid., vol. 24, no. 4, pp. 243–246, Nov. 2004.
    [53]
    D. Kim, Y. Park, Y. S. Park, S. Kwon, and E. Kim, “Dual stage trolley control system for anti-swing control of mobile harbor crane,” in Proc. 11th Int. Conf. Control, Automation and Systems, Gyeonggi-do, South Korea, 2011, pp. 420–423.
    [54]
    M. Agostini, G. G. Parker, K. Groom, H. Schaub, and R. D. Robinett, “Command shaping and closed-loop control interactions for a ship crane,” in Proc. American Control Conf., Anchorage, USA, 2002, pp. 2298–2304.
    [55]
    A. Rauh, L. Senkel, J. Gebhardt, and H. Aschemann, “Stochastic methods for the control of crane systems in marine applications,” in Proc. European Control Conf., Strasbourg, France, 2014, pp. 2998– 3003.
    [56]
    Y. Z. Qian and Y. C. Fang, “A learning strategy based partial feedback linearization control method for an offshore boom crane,” in Proc. 54th IEEE Conf. Decision Control, Osaka, Japan, 2015, pp. 6737–6742.
    [57]
    Y. Z. Qian, Y. C. Fang, and B. Lu, “Adaptive repetitive learning control for an offshore boom crane,” Automatica, vol. 82, pp. 21–28, Aug. 2017. doi: 10.1016/j.automatica.2017.04.003
    [58]
    L. A. Tuan, Q. Ha, and P. Van Trieu, “Observer-based nonlinear robust control of floating container cranes subject to output hysteresis,” J. Dyn. Syst.,Meas.,Control, vol. 141, no. 11, pp. 111002, Nov. 2019. doi: 10.1115/1.4043984
    [59]
    S. Y. Dian, L. Chen, S. Hoang, M. Pu, and J. Y. Liu, “Dynamic balance control based on an adaptive gain-scheduled backstepping scheme for power-line inspection robots,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 198–208, Jan. 2019. doi: 10.1109/JAS.2017.7510721
    [60]
    B. Xian, J. C. Guo, and Y. Zhang, “Adaptive backstepping tracking control of a 6-DOF unmanned helicopter,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 1, pp. 19–24, Jan. 2015. doi: 10.1109/JAS.2015.7032902
    [61]
    Z. L. Zeng, K. Tian, and W. X. Li, “Trajectory tracking and load anti-sway control for ship-borne special crane,” J. Harbin Eng. Univ., vol. 26, no. 4, pp. 457–461, Aug. 2005.
    [62]
    N. P. Nguyen, Q. H. Ngo, and Q. P. Ha, “Active control of an offshore container crane,” in Proc. 15th Int. Conf. Control, Automation and Systems, Busan, South Korea, 2015, pp. 773–778.
    [63]
    Z. Xi and T. Hesketh, “Discrete time integral sliding mode control for overhead crane with uncertainties,” IET Control Theory Appl., vol. 4, no. 10, pp. 2071–2081, Oct. 2010. doi: 10.1049/iet-cta.2009.0558
    [64]
    L. A. Tuan, S. C. Moon, W. G. Lee, and S. G. Lee, “Adaptive sliding mode control of overhead cranes with varying cable length,” J. Mech. Sci. Technol., vol. 27, no. 3, pp. 885–893, Mar. 2013. doi: 10.1007/s12206-013-0204-x
    [65]
    M. H. Zhang, X. Ma, R. Song, X. W. Rong, G. H. Tian, X. C. Tian, and Y. B. Li, “Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 41–48, May 2018.
    [66]
    M. Van, M. Mavrovouniotis, and S. S. Ge, “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 7, pp. 1448–1458, Jul. 2019. doi: 10.1109/TSMC.2017.2782246
    [67]
    B. Lu, Y. C. Fang, and N. Sun, “Continuous sliding mode control strategy for a class of nonlinear underactuated systems,” IEEE Trans. Autom. Control, vol. 63, no. 10, pp. 3471–3478, Oct. 2018. doi: 10.1109/TAC.2018.2794885
    [68]
    Q. H. Ngo and K. S. Hong, “Sliding-mode antisway control of an offshore container crane,” IEEE/ASME Trans. Mech., vol. 17, no. 2, pp. 201–209, Apr. 2012. doi: 10.1109/TMECH.2010.2093907
    [69]
    J. Suthakorn and G. G. Parker, “Anti-swing control of suspended loads on shipboard robotic cranes,” Syst.,Cybern. Informatics, vol. 3, no. 1, pp. 35–40, 2004.
    [70]
    Y. G. Sun, D. S. Dong, H. Y. Qiang, and Y. Y. Teng, “Crab position tracking and lifting weight anti-sway control for an off-shore container crane on sea,” J. Vib. Shock, vol. 37, no. 11, pp. 207–215, 245, Jun. 2018.
    [71]
    G. H. Kim, M. X. Piao, and K. S. Hong, “Sliding mode control of a dual-trolley mobile harbor crane in the presence of wave-induced ship motions,” in Proc. 11th Asian Control Conf., Gold Coast, Australia, 2017, pp. 2680–2685.
    [72]
    Q. H. Ngo and N. P. Nguyen, “Sliding mode control design with the time varying parameters of the sliding surface of an offshore container crane,” in Proc. 11th Asian Control Conf., Gold Coast, Australia, 2017, pp. 2669–2674.
    [73]
    L. A. Tuan, H. M. Cuong, P. V. Trieu, L. C. Nho, V. D. Thuanb, and L. V. Anh, “Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash,” Mech. Syst. Signal Process, vol. 112, pp. 233–250, Nov. 2018. doi: 10.1016/j.ymssp.2018.04.030
    [74]
    Y. Z. Qian, Y. C. Fang, and T. Yang, “An energy-based nonlinear coupling control for offshore ship-mounted cranes,” Int. J. Autom. Comput., vol. 15, no. 5, pp. 570–581, Jun. 2018. doi: 10.1007/s11633-018-1134-y
    [75]
    B. Lu, Y. C. Fang, N. Sun, and X. Y. Wang, “Antiswing control of offshore boom cranes with ship roll disturbances,” IEEE Trans. Control Syst. Technol., vol. 26, no. 2, pp. 740–747, Mar. 2018. doi: 10.1109/TCST.2017.2679060
    [76]
    N. Sun, T. Yang, H. Chen, and Y. C. Fang, “Dynamic feedback antiswing control of shipboard cranes without velocity measurement: theory and hardware experiments,” IEEE Trans. Ind. Informatics, vol. 15, no. 5, pp. 2879–2891, May 2019. doi: 10.1109/TII.2018.2878935
    [77]
    N. Sun, Y. C. Fang, H. Chen, Y. M. Wu, and B. Lu, “Nonlinear antiswing control of offshore cranes with unknown parameters and persistent ship-induced perturbations: theoretical design and hardware experiments,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2629–2641, Mar. 2018. doi: 10.1109/TIE.2017.2767523
    [78]
    B. Lu, Y. C. Fang, and N. Sun, “Nonlinear coordination control of offshore boom cranes with bounded control inputs,” Int. J. Robust Nonlinear Control, vol. 29, no. 4, pp. 1165–1181, Mar. 2019.
    [79]
    M. H. Zhang, Y. F. Zhang, and X. G. Cheng, “An enhanced coupling PD with sliding mode control method for underactuated double-pendulum overhead crane systems,” Int. J. Control Autom. Syst., vol. 17, no. 6, pp. 1579–1588, May 2019. doi: 10.1007/s12555-018-0646-0
    [80]
    N. Sun, Y. C. Fang, H. Chen, and B. Lu, “Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2135–2146, Mar. 2017. doi: 10.1109/TIE.2016.2623258
    [81]
    N. Sun, Y. M. Wu, X. Liang, and Y. C. Fang, “Nonlinear stable transportation control for double-pendulum shipboard cranes with ship-motion-induced disturbances,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9467–9479, Dec. 2019. doi: 10.1109/TIE.2019.2893855
    [82]
    J. H. Jang, S. H. Kwon, and E. T. Jeung, “Pendulation reduction on ship-mounted container crane via T-S fuzzy model,” J. Cent. South Univ., vol. 19, no. 1, pp. 163–167, Jan. 2012. doi: 10.1007/s11771-012-0986-5
    [83]
    D. Chwa, “Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6775–6784, Aug. 2017. doi: 10.1109/TIE.2017.2701760
    [84]
    N. P. Nguyen, T. N. Phan, and Q. H. Ngo, “Autonomous offshore container crane system using a fuzzy-PD logic controller,” in Proc. 16th Int. Conf. Control, Autom. and Systems, Gyeongju, South Korea, 2016, pp. 1093–1098.
    [85]
    P. Li, Z. L. Zeng, and W. X. Li, “Intelligent control system and simulation research of shipborne crane,” J. Syst. Simul., vol. 16, no. 4, pp. 791–793, Apr. 2004.
    [86]
    T. Yang, N. Sun, H. Chen, and Y. C. Fang, “Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones,” IEEE Trans. Neural Networks Learn. Sys., 2019, doi: 10.1109/TNNLS.2019.2910580

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (1551) PDF downloads(121) Cited by()

    Highlights

    • The dynamics characteristic and challenges of controller design are analyzed to illustrate the essence of the research on shipboard cranes.
    • A comprehensive review and brief analysis on shipboard cranes control are presented to know about the development in this research interest.
    • Some research directions are put forward for reference, so it is expected that the paper will be useful for improving existing control schemes and generating novel control approaches for shipboard crane systems.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return