A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 2
Mar.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
Yifang Ma, Zhenyu Wang, Hong Yang and Lin Yang, "Artificial Intelligence Applications in the Development of Autonomous Vehicles: A Survey," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 315-329, Mar. 2020. doi: 10.1109/JAS.2020.1003021
Citation: Yifang Ma, Zhenyu Wang, Hong Yang and Lin Yang, "Artificial Intelligence Applications in the Development of Autonomous Vehicles: A Survey," IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 315-329, Mar. 2020. doi: 10.1109/JAS.2020.1003021

Artificial Intelligence Applications in the Development of Autonomous Vehicles: A Survey

doi: 10.1109/JAS.2020.1003021
Funds:  This work was partially supported by the Fundamental Research Funds for the Central Universities (2662019QD002)
More Information
  • The advancement of artificial intelligence (AI) has truly stimulated the development and deployment of autonomous vehicles (AVs) in the transportation industry. Fueled by big data from various sensing devices and advanced computing resources, AI has become an essential component of AVs for perceiving the surrounding environment and making appropriate decision in motion. To achieve goal of full automation (i.e., self-driving), it is important to know how AI works in AV systems. Existing research have made great efforts in investigating different aspects of applying AI in AV development. However, few studies have offered the research community a thorough examination of current practices in implementing AI in AVs. Thus, this paper aims to shorten the gap by providing a comprehensive survey of key studies in this research avenue. Specifically, it intends to analyze their use of AIs in supporting the primary applications in AVs: 1) perception; 2) localization and mapping; and 3) decision making. It investigates the current practices to understand how AI can be used and what are the challenges and issues associated with their implementation. Based on the exploration of current practices and technology advances, this paper further provides insights into potential opportunities regarding the use of AI in conjunction with other emerging technologies: 1) high definition maps, big data, and high performance computing; 2) augmented reality (AR)/virtual reality (VR) enhanced simulation platform; and 3) 5G communication for connected AVs. This paper is expected to offer a quick reference for researchers interested in understanding the use of AI in AV research.

     

  • loading
  • [1]
    NHTSA, “Traffic safety facts 2015,” National Highway Traffic Safety Administration, U.S. Department of Transportation, Washington, USA, 2017. [Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812384.
    [2]
    M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan, “Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks?,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, 2017.
    [3]
    A. Taeihagh and H. S. M. Lim, “Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks,” Transp. Rev., vol. 39, no. 1, pp. 103–128, 2019. doi: 10.1080/01441647.2018.1494640
    [4]
    W. J. Shi, M. B. Alawieh, X. Li, and H. F. Yu, “Algorithm and hardware implementation for visual perception system in autonomous vehicle: a survey,” Integration, vol. 59, pp. 148–156, Sept. 2017. doi: 10.1016/j.vlsi.2017.07.007
    [5]
    C. Katrakazas, M. Quddus, W. H. Chen, and L. Deka, “Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions,” Transp. Res. C Emerg. Technol., vol. 60, pp. 416–442, Nov. 2015. doi: 10.1016/j.trc.2015.09.011
    [6]
    W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making for autonomous vehicles,” Annu. Rev. Control Robot. Auton. Syst., vol. 1, pp. 187–210, May 2018. doi: 10.1146/annurev-control-060117-105157
    [7]
    S. Shafaei, S. Kugele, M. H. Osman, and A. Knoll, “Uncertainty in machine learning: a safety perspective on autonomous driving,” in Proc. 1st Int. Workshop Artificial Intelligence Safety Engineering, At Västerås, Sweden, 2018, pp. 458–464.
    [8]
    J. Y. Li, J. Zhang, and N. Kaloudi, “Could we issue driving licenses to autonomous vehicles?,” in Computer Safety, Reliability, and Security, B. Gallina, A. Skavhaug, E. Schoitsch, and F. Bitsch, Eds. Cham, Germany: Springer, 2018, pp. 473–480.
    [9]
    G. V. Zitzewitz, “Survey of neural networks in autonomous driving,” Advanced Seminar SS 2017, 2017.
    [10]
    D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep neural network for traffic sign classification,” Neural Netw., vol. 32, pp. 333–338, Aug. 2012. doi: 10.1016/j.neunet.2012.02.023
    [11]
    W. Li, X. J. Jiang, and Y. X. Wang, “Road recognition for vision navigation of an autonomous vehicle by fuzzy reasoning,” Fuzzy Sets Syst., vol. 93, no. 3, pp. 275–280, Feb. 1998. doi: 10.1016/S0165-0114(96)00211-4
    [12]
    Q. Li, N. N. Zheng, and H. Cheng, “Springrobot: a prototype autonomous vehicle and its algorithms for lane detection,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4, pp. 300–308, Dec. 2004. doi: 10.1109/TITS.2004.838220
    [13]
    A. Petrovskaya and S. Thrun, “Model based vehicle detection and tracking for autonomous urban driving,” Auton. Robots, vol. 26, no. 2-3, pp. 123–139, Apr. 2009. doi: 10.1007/s10514-009-9115-1
    [14]
    D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transp. Res. A Policy Pract., vol. 77, pp. 167–181, Jul. 2015. doi: 10.1016/j.tra.2015.04.003
    [15]
    Y. J. Zeng, X. Xu, D. Y. Shen, Y. Q. Fang, and Z. P. Xiao, “Traffic sign recognition using kernel extreme learning machines with deep perceptual features,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1647–1653, Jun. 2017.
    [16]
    W. Q. Chu, Y. Liu, C. Shen, D. Cai, and X. S. Hua, “Multi-task vehicle detection with region-of-interest voting,” IEEE Trans. Image Processing, vol. 27, no. 1, pp. 432–441, Jan. 2018. doi: 10.1109/TIP.2017.2762591
    [17]
    Y. R. Chen, D. B. Zhao, L. Lv, and Q. C. Zhang, “Multi-task learning for dangerous object detection in autonomous driving,” Inf. Sci., vol. 432, pp. 559–571, Mar. 2018. doi: 10.1016/j.ins.2017.08.035
    [18]
    V. John, K. Yoneda, Z. Liu, and S. Mita, “Saliency map generation by the convolutional neural network for real-time traffic light detection using template matching,” IEEE Trans. Comput. Imaging, vol. 1, no. 3, pp. 159–173, Sept. 2015. doi: 10.1109/TCI.2015.2480006
    [19]
    C. Y. Chen, A. Seff, A. Kornhauser, and J. X. Xiao, “Deepdriving: learning affordance for direct perception in autonomous driving,” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015.
    [20]
    M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. K. Zhang, X. Zhang, J. K. Zhao, and K. Zieba, “End to end learning for self-driving cars,” arXiv: 1604.07316, Apr. 2016.
    [21]
    M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, and U. Muller, “Explaining how a deep neural network trained with end-to-end learning steers a car,” arXiv: 1704.07911, Apr. 2017.
    [22]
    P. F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi, “Street-view change detection with deconvolutional networks,” Auton. Robots, vol. 42, no. 7, pp. 1301–1322, Oct. 2018. doi: 10.1007/s10514-018-9734-5
    [23]
    H. J. Vishnukumar, B. Butting, C. Müller, and E. Sax, “Machine learning and deep neural network-artificial intelligence core for lab and real-world test and validation for ADAS and autonomous vehicles: AI for efficient and quality test and validation,” in Proc. Intelligent Systems Conf., London, UK, 2017, pp. 714–721.
    [24]
    M. Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani, “Computer vision in automated parking systems: design, implementation and challenges,” Image Vis. Comput., vol. 68, pp. 88–101, Dec. 2017. doi: 10.1016/j.imavis.2017.07.002
    [25]
    G. Notomista and M. Botsch, “A machine learning approach for the segmentation of driving maneuvers and its application in autonomous parking,” J. Artif. Intell. Soft Comput. Res., vol. 7, no. 4, pp. 243–255, May 2017. doi: 10.1515/jaiscr-2017-0017
    [26]
    A. B. B. Kwame, C. Ryad, A. A. Yaw, and K. Frimpong, “An overview of nature-inspired, conventional, and hybrid methods of autonomous vehicle path planning,” J. Adv. Transp., vol. 2018, pp. 8269698, 2018.
    [27]
    J. Hardy and M. Campbell, “Contingency planning over probabilistic obstacle predictions for autonomous road vehicles,” IEEE Trans. Robot., vol. 29, no. 4, pp. 913–929, Aug. 2013. doi: 10.1109/TRO.2013.2254033
    [28]
    S. Al-Hasan and G. Vachtsevanos, “Intelligent route planning for fast autonomous vehicles operating in a large natural terrain,” Rob. Auton. Syst., vol. 40, no. 1, pp. 1–24, Jul. 2002. doi: 10.1016/S0921-8890(02)00208-7
    [29]
    J. J. Chen, W. H. Jiang, P. Zhao, and J. F. Hu, “A path planning method of anti-jamming ability improvement for autonomous vehicle navigating in off-road environments,” Ind. Robot, vol. 44, no. 4, pp. 406–415, Jun. 2017. doi: 10.1108/IR-11-2016-0301
    [30]
    D. O. Sales, D. O. Correa, L. C. Fernandes, D. F. Wolf, and F. S. Osório, “Adaptive finite state machine based visual autonomous navigation system,” Eng. Appl. Artif. Intell., vol. 29, pp. 152–162, Mar. 2014. doi: 10.1016/j.engappai.2013.12.006
    [31]
    K. Akermi, S. Chouraqui, and B. Boudaa, “Novel SMC control design for path following of autonomous vehicles with uncertainties and mismatched disturbances,” Int. J. Dyn. Control, [Online]. Available: https://doi.org/10.1007/s40435-018-0478-z.
    [32]
    X. H. Dai, C. K. Li, and A. B. Rad, “An approach to tune fuzzy controllers based on reinforcement learning for autonomous vehicle control,” IEEE Trans. Intell. Transp. Syst., vol. 6, no. 3, pp. 285–293, Sep. 2005. doi: 10.1109/TITS.2005.853698
    [33]
    S. Y. Gong and L. L. Du, “Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles,” Transp. Res. B Methodol., vol. 116, pp. 25–61, Oct. 2018. doi: 10.1016/j.trb.2018.07.005
    [34]
    E. Onieva, J. E. Naranjo, V. Milanés, J. Alonso, R. García, and J. Pérez, “Automatic lateral control for unmanned vehicles via genetic algorithms,” Appl. Soft Comput., vol. 11, no. 1, pp. 1303–1309, Jan. 2011. doi: 10.1016/j.asoc.2010.04.003
    [35]
    L. Z. Li, K. Ota, and M. X. Dong, “Humanlike driving: empirical decision-making system for autonomous vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 8, pp. 6814–6823, Aug. 2018. doi: 10.1109/TVT.2018.2822762
    [36]
    X. M. Chen, M. Jin, Y. S. Miao, and Q. Zhang, “Driving decision-making analysis of car-following for autonomous vehicle under complex urban environment,” J. Cen. South Univ., vol. 24, no. 6, pp. 1476–1482, Jun. 2017. doi: 10.1007/s11771-017-3551-4
    [37]
    H. B. Gao, G. Y. Shi, G. T. Xie, and B. Cheng, “Car-following method based on inverse reinforcement learning for autonomous vehicle decision-making,” Int. J. Adv. Robotic Syst., vol. 15, no. 6, pp. 1729881418817162, Oct. 2018.
    [38]
    D. A. Pomerleau, “Alvinn: an autonomous land vehicle in a neural network,” in Proc. Advances in Neural Information Processing Systems, San Francisco, USA, 1989, pp. 305–313.
    [39]
    H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-end deep learning for steering autonomous vehicles considering temporal dependencies,” arXiv: 1710.03804, Nov. 2017.
    [40]
    S. W. Kim, W. Liu, M. H. Ang, E. Frazzoli, and D. Rus, “The impact of cooperative perception on decision making and planning of autonomous vehicles,” IEEE Intell. Transp. Syst. Mag., vol. 7, no. 3, pp. 39–50, 2015. doi: 10.1109/MITS.2015.2409883
    [41]
    L. Banjanovic-Mehmedovic, I. Butigan, F. Mehmedovic, and M. Kantardzic, “Hybrid automaton based vehicle platoon modelling and cooperation behaviour profile prediction,” Tehnički Vjesnik, vol. 25, no. 3, pp. 923–932, 2018.
    [42]
    K. M. Ali Alheeti and K. McDonald-Maier, “Intelligent intrusion detection in external communication systems for autonomous vehicles,” Syst. Sci. Control Eng., vol. 6, no. 1, pp. 48–56, 2018. doi: 10.1080/21642583.2018.1440260
    [43]
    M. Aki, T. Rojanaarpa, K. Nakano, Y. Suda, N. Takasuka, T. Isogai, and T. Kawai, “Road surface recognition using laser radar for automatic platooning,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 10, pp. 2800–2810, Oct. 2016. doi: 10.1109/TITS.2016.2528892
    [44]
    J. Jo, Y. Tsunoda, B. Stantic, and A. W. C. Liew, “A likelihood-based data fusion model for the integration of multiple sensor data: a case study with vision and lidar sensors,” in Robot Intelligence Technology and Applications 4, J. H. Kim, F. Karray, J. Jo, P. Sincak, and H. Myung, Eds. Cham, Germany: Springer, 2017, pp. 489–500.
    [45]
    P. Radecki, M. Campbell, and K. Matzen, “All weather perception: joint data association, tracking, and classification for autonomous ground vehicles,” arXiv: 1605.02196, May 2016.
    [46]
    Z. Y. Cui, S. W. Yang, and H. M. Tsai, “A vision-based hierarchical framework for autonomous front-vehicle taillights detection and signal recognition,” in Proc. 18th IEEE Int. Conf. Intelligent Transportation Systems, Las Palmas, Spain, 2015, pp. 931–937.
    [47]
    J. Van Brummelen, M. O.Brien, D. Gruyer, and H. Najjaran, “Autonomous vehicle perception: the technology of today and tomorrow,” Transp. Res. C Emerg. Technol., vol. 89, pp. 384–406, Apr. 2018. doi: 10.1016/j.trc.2018.02.012
    [48]
    J. M. Gitlin, “Assists, autopilot, and more: Ars talks about autonomous driving with audi.” [Online]. Available: http://arstechnica.com/cars/2016/01/assists-autopilotand-more-ars-talks-about-autonomous-driving-with-audi/.
    [49]
    J. M. Gitlin, “Ars talks self-driving car technology with ford at ces.” [Online]. Available: http://arstechnica.com/cars/2016/01/ars-talks-self-driving-technology-with-ford-at-ces/.
    [50]
    Google, “Google self-driving car project.” [Online]. Available: https://www.mendeley.com/catalogue/google-selfdriving-car-project/.
    [51]
    S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro, vol. 35, no. 6, pp. 60–68, Dec. 2015. doi: 10.1109/MM.2015.133
    [52]
    Volvo Car, “Self-driving car technology-intellisafe.” [Online]. Available: http://www.volvocars.com/intl/about/our-innovation-brands/intellisafe/intellisafe-autopilot/this-is-autopilot/the-tech.
    [53]
    A. Webb, “Apple expands California self-driving test fleet to 27 cars.” [Online]. Available: https://www.bloomberg.com/news/articles/2018-01-25/apple-expands-california-self-driving-test-fleet-to-27-cars.
    [54]
    DiDi, “Didi Chuxing can now test self-driving cars in California.” [Online]. Available: https://techcrunch.com/2018/05/14/didi-chuxing-can-now-test-self-driving-cars-in-california/.
    [55]
    D. Sherman, “Semi-autonomous Comparo! Tesla, BMW, Mercedes-Benz, and Infiniti.” [Online]. Available: https://www.caranddriver.com/features/a15101943/semi-autonomous-cars-compared-tesla-vs-bmw-mercedes-and-infiniti-feature.
    [56]
    Lexus, “Lexus rx-safety.” [Online]. Available: http://www.lexus.com/models/RX/safety.
    [57]
    [58]
    BMW, “BMW connecteddrive: intelligent driving.” [Online]. Available: http://www.bmw.com/com/en/insights/technology/connecteddrive/2013/driver_assistance/intelligent_driving.html.
    [59]
    J. Stewart, “$30k retrofit turns dumb semis into self-driving robots.” [Online]. Available: https://www.wired.com/2016/05/otto-retrofit-autonomous-self-driving-trucks.
    [60]
    [61]
    J. Golson, “Tesla’s autopilot system is reportedly getting more sensors.” [Online]. Available: https://www.theverge.com/2016/8/11/12443310/tesla-autopilot-next-generation-radar-triple-camera.
    [62]
    Baidu, “Autonomous driving solution.” [Online]. Available: http://apollo.auto/.
    [63]
    M. S. Ramanagopal, C. Anderson, R. Vasudevan, and M. Johnson-Roberson, “Failing to learn: autonomously identifying perception failures for self-driving cars,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3860–3867, Oct. 2018. doi: 10.1109/LRA.2018.2857402
    [64]
    N. Pous, D. Gingras, and D. Gruyer, “Intelligent vehicle embedded sensors fault detection and isolation using analytical redundancy and nonlinear transformations,” J. Control Sci. Eng., vol. 2017, pp. 1763934, 2017.
    [65]
    D. Zang, Z. H. Wei, M. M. Bao, J. J. Cheng, D. D. Zhang, K. S. Tang, and X. Li, “Deep learning–based traffic sign recognition for unmanned autonomous vehicles,” in Proc. Inst. Mech. Eng. J. Syst. Control Eng., vol. 232, no. 5, pp. 497–505, May 2018.
    [66]
    F. Mohseni, S. Voronov, and E. Frisk, “Deep learning model predictive control for autonomous driving in unknown environments,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 447–452, 2018. doi: 10.1016/j.ifacol.2018.11.593
    [67]
    Y. Q. Yang, Z. Wu, Q. Y. Xu, and F. B. Yan, “Deep learning technique-based steering of autonomous car,” Int. J. Comput. Intell. Appl., vol. 17, no. 2, pp. 1850006, 2018. doi: 10.1142/S1469026818500062
    [68]
    S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement learning for autonomous driving,” arXiv: 1610.03295, Oct. 2016.
    [69]
    A. E. L. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement learning framework for autonomous driving,” Electron. Imaging, vol. 2017, no. 19, pp. 70–76, 2017. doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023
    [70]
    P. Wang and C. Y. Chan, “Formulation of deep reinforcement learning architecture toward autonomous driving for on-ramp merge,” in Proc. 20th IEEE Int. Conf. Intelligent Transportation Systems, Yokohama, Japan, 2017, pp. 1–6.
    [71]
    Z. Q. Qiao, K. Muelling, J. M. Dolan, P. Palanisamy, and P. Mudalige, “Automatically generated curriculum based reinforcement learning for autonomous vehicles in urban environment,” in Proc. IEEE Intelligent Vehicles Symp., Changshu, China, 2018, pp. 1233–1238.
    [72]
    D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigating occluded intersections with autonomous vehicles using deep reinforcement learning,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, Australia, 2018, pp. 2034–2039.
    [73]
    M. Bellone, G. Reina, L. Caltagirone, and M. Wahde, “Learning traversability from point clouds in challenging scenarios,” IEEE Trans. Intelligent Transportation Systems, vol. 19, no. 1, pp. 296–305, Jan. 2018. doi: 10.1109/TITS.2017.2769218
    [74]
    T. Bécsi, S. Aradi, Á. Fehér, J. Szalay, and P. Gáspár, “Highway environment model for reinforcement learning,” IFAC-PapersOnLine, vol. 51, no. 22, pp. 429–434, 2018. doi: 10.1016/j.ifacol.2018.11.596
    [75]
    C. X. You, J. B. Lu, D. Filev, and P. Tsiotras, “Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning,” Rob. Auton. Syst., vol. 114, pp. 1–18, Apr. 2019. doi: 10.1016/j.robot.2019.01.003
    [76]
    J. Q. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi, “Towards a viable autonomous driving research platform,” in Proc. IEEE Intelligent Vehicles Symp., Gold Coast, Australia, 2013, pp. 763–770.
    [77]
    M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas, Y. Pilat, F. Homm, W. Huber, and N. Kaempchen, “Experience, results and lessons learned from automated driving on Germany’s highways,” IEEE Intell. Transp. Syst. Mag., vol. 7, no. 1, pp. 42–57, Spr. 2015. doi: 10.1109/MITS.2014.2360306
    [78]
    N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, and A. Jaffey,“In-datacenter performance analysis of a tensor processing unit,” in Proc. 44th ACM/IEEE Annu. Int. Symp. Computer Architecture, Toronto, Canada, 2017, pp. 1–12.
    [79]
    W. J. Shi, M. B. Alawieh, X. Li, H. F. Yu, N. Arechiga, and N. Tomatsu, “Efficient statistical validation of machine learning systems for autonomous driving,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, Austin, USA, 2016, pp. 1–8.
    [80]
    Intel, Efficient implementation of neural network systems built on FPGAs, and programmed with OpenCLTM. [Online]. Available: https://www.altera.com/en_US/pdfs/literature/solution-sheets/efficient_neural_networks.pdf.
    [81]
    K. Ovtcharov, O. Ruwase, J. Y. Kim J. Fowers, K. Strauss, and E. Chung, “Accelerating deep convolutional neural networks using specialized hardware,” 2015. [Online]. Available: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf.
    [82]
    C. Zhang, D. Wu, J. Y. Sun, G. Y. Sun, G. J. Luo, and J. Cong, “Energy-efficient CNN implementation on a deeply pipelined FPGA cluster,” in Proc. Int. Symp. on Low Power Electronics and Design, New York, USA, 2016, pp. 326–331.
    [83]
    Z. Q. Liu, Y. Dou, J. F. Jiang, J. W. Xu, S. J. Li, Y. M. Zhou, and Y. N. Xu, “Throughput-optimized FPGA accelerator for deep convolutional neural networks,” ACM Trans. Reconfigur. Technol. Syst. (TRETS), vol. 10, no. 3, pp. 17, Jul. 2017.
    [84]
    K. Korosec, This startup is using Uber and Lyft drivers to bring self-driving cars to market faster. [Online]. Available: https://www.theverge.com/2017/7/19/16000272/lvl5-self-driving-car-tesla-map-lidar.
    [85]
    H. Yang, Y. Z. Shen, M. Hasan, D. Perez, and J. Shull, “Framework for Interactive M3 visualization of microscopic traffic simulation,” Transp. Res. Rec., vol. 2672, no. 44, pp. 62–71, Dec. 2018. doi: 10.1177/0361198118787088
    [86]
    D. Perez, M. Hasan, Y. Z. Shen, and H. Yang, “AR-PED: a framework of augmented reality enabled pedestrian-in-the-loop simulation,” Simul. Model. Pract. Theory, vol. 94, pp. 237–249, Jul. 2019. doi: 10.1016/j.simpat.2019.03.005
    [87]
    USC, 3 Ways AR/VR are improving autonomous vehicles. [Online]. Available: http://ict.usc.edu/news/3-ways-arvr-are-improving-autonomous-vehicles/.
    [88]
    G. H. Sim, S. Klos, A. Asadi, A. Klein, and M. Hollick, “An online context-aware machine learning algorithm for 5G mmWave vehicular communications,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2487–2500, Dec. 2018. doi: 10.1109/TNET.2018.2869244
    [89]
    J. Choi, V. Va, N. Gonzalez-Prelcic, R. Daniels, C. R. Bhat, and R. W. Heath, “Millimeter-wave vehicular communication to support massive automotive sensing,” IEEE Commun. Mag., vol. 54, no. 12, pp. 160–167, Dec. 2016. doi: 10.1109/MCOM.2016.1600071CM
    [90]
    J. K. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end autonomous driving,” arXiv: 1605.06450, May 2016.
    [91]
    Z. L. Chen and X. M. Huang, “Accurate and reliable detection of traffic lights using multiclass learning and multiobject tracking,” IEEE Intell. Transp. Syst. Mag., vol. 8, no. 4, pp. 28–42, 2016. doi: 10.1109/MITS.2016.2605381
    [92]
    B. Okumura, M. R. James, Y. Kanzawa, M. Derry, K. Sakai, T. Nishi, and D. Prokhorov, “Challenges in perception and decision making for intelligent automotive vehicles: a case study,” IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 20–32, Mar. 2016. doi: 10.1109/TIV.2016.2551545
    [93]
    Z. Zhong, M. Y. Lei, S. Z. Li, and J. P. Fan, “Re-ranking object proposals for object detection in automatic driving,” arXiv: 1605.05904, May 2016.
    [94]
    M. N. Saquib, M. J. Ashraf, and C. D. O. Malik, “Self driving car system using (AI) artificial intelligence,” Asian J. Appl. Sci. Technol., vol. 1, no. 6, pp. 85–88, 2017.
    [95]
    S. Bang and S. Ahn, “Platooning strategy for connected and autonomous vehicles: transition from light traffic,” Trans. Res. Rec. J. Transp. Res. Board, vol. 2623, no. 1, pp. 73–81, Jan. 2017. doi: 10.3141/2623-08
    [96]
    L. Chen, X. M. Hu, T. Xu, H. L. Kuang, and Q. Q. Li, “Turn signal detection during nighttime by CNN detector and perceptual hashing tracking,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12, pp. 3303–3314, Dec. 2017. doi: 10.1109/TITS.2017.2683641
    [97]
    N. Morales, J. Toledo, L. Acosta, and J. Sánchez-Medina, “A combined voxel and particle filter-based approach for fast obstacle detection and tracking in automotive applications,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1824–1834, Jul. 2017. doi: 10.1109/TITS.2016.2616718
    [98]
    P. J. Navarro, C. Fernandez, R. Borraz, and D. Alonso, “A machine learning approach to pedestrian detection for autonomous vehicles using high-definition 3D range data,” Sensors, vol. 17, no. 1, pp. 18, 2017.
    [99]
    K. Okamoto, K. Berntorp, and S. Di Cairano, “Driver intention-based vehicle threat assessment using random forests and particle filtering,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 13860–13865, Jul. 2017. doi: 10.1016/j.ifacol.2017.08.2231
    [100]
    S. S. Shadrin, O. O. Varlamov, and A. M. Ivanov, “Experimental autonomous road vehicle with logical artificial intelligence,” J. Adv. Transp., vol. 2017, pp. 2492765, 2017.
    [101]
    A. M. López, G. Villalonga, L. Sellart, G. Ros, Vazquez, J. L. Xu, J. Marin, and A. Mozafari, “Training my car to see using virtual worlds,” Image Vis. Comput., vol. 68, pp. 102–118, Dec. 2017. doi: 10.1016/j.imavis.2017.07.007
    [102]
    S. Natarajan, A. K. Annamraju, and C. S. Baradkar, “Traffic sign recognition using weighted multi-convolutional neural network,” IET Intell. Transp. Syst., vol. 12, no. 10, pp. 1396–1405, 2018. doi: 10.1049/iet-its.2018.5171
    [103]
    R. Bin Sulaiman, Artificial intelligence based autonomous car. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3167638.
    [104]
    Y. Jeong, S. Son, E. Jeong, and B. Lee, “An integrated self-diagnosis system for an autonomous vehicle based on an iot gateway and deep learning,” Appl. Sci., vol. 8, no. 7, pp. 1164, 2018. doi: 10.3390/app8071164
    [105]
    M. Amir, F. Vahid, and T. Givargis, “Switching predictive control using reconfigurable state-based model,” ACM Trans. Des. Autom. Electron. Syst., vol. 24, no. 1, pp. 2, Nov. 2018.
    [106]
    Y. Y. Ye, X. L. Hao, and H. J. Chen, “Lane detection method based on lane structural analysis and CNNs,” IET Intell. Transp. Syst., vol. 12, no. 6, pp. 513–520, 2018. doi: 10.1049/iet-its.2017.0143
    [107]
    B. M. Elbagoury, R. Maskeliunas, and A. B. M. M. Salem, “A hybrid liar/radar-based deep learning and vehicle recognition engine for autonomous vehicle Precrash control,” Eastern, vol. 5, no. 9, pp. 6–17, 2018.
    [108]
    D. Fényes, B. Németh, and P. Gáspár, “Data-driven reachability analysis for the reconfiguration of vehicle control systems,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 831–836, 2018. doi: 10.1016/j.ifacol.2018.09.671
    [109]
    J. Dequaire, P. Ondrúška, D. Rao, D. Wang, and I. Posner, “Deep tracking in the wild: end-to-end tracking using recurrent neural networks,” Int. J. Rob. Res., vol. 37, no. 4-5, pp. 492–512, 2018. doi: 10.1177/0278364917710543
    [110]
    W. Farag, “Recognition of traffic signs by convolutional neural nets for self-driving vehicles,” Int. J. Knowl-based Intell. Eng. Syst., vol. 22, no. 3, pp. 205–214, 2018.
    [111]
    X. L. Liu and Z. D. Deng, “Segmentation of drivable road using deep fully convolutional residual network with pyramid pooling,” Cogn. Comput., vol. 10, no. 2, pp. 272–281, Apr. 2018. doi: 10.1007/s12559-017-9524-y
    [112]
    A. Dairi, F. Harrou, M. Senouci, and Y. Sun, “Unsupervised obstacle detection in driving environments using deep-learning-based stereovision,” Rob. Auton. Syst., vol. 100, pp. 287–301, Feb. 2018. doi: 10.1016/j.robot.2017.11.014
    [113]
    S. Yang, W. S. Wang, C. Liu, and W. W. Deng, “Scene understanding in deep learning-based end-to-end controllers for autonomous vehicles,” IEEE Trans. Syst.,Man Cybern. Syst., vol. 49, no. 1, pp. 53–63, Jan. 2019. doi: 10.1109/TSMC.2018.2868372
    [114]
    Q. Meng, H. S. Song, G. Li, Y. A. Zhang, and X. Q. Zhang, “A block object detection method based on feature fusion networks for autonomous vehicles,” Complexity, vol. 2019, pp. 4042624, 2019.
    [115]
    C. Lv, X. S. Hu, A. Sangiovanni-Vincentelli, Y. T. Li, C. M. Martinez, and D. P. Cao, “Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach,” IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 2965–2975, Apr. 2019. doi: 10.1109/TIE.2018.2850031
    [116]
    B. K. Chen, C. Gong, and J. Yang, “Importance-aware semantic segmentation for autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 1, pp. 137–148, Jan. 2019. doi: 10.1109/TITS.2018.2801309
    [117]
    L. Chen, X. M. Hu, W. Tian, H. Wang, D. P. Cao, and F. Y. Wang, “Parallel planning: a new motion planning framework for autonomous driving,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 236–246, Jan. 2019. doi: 10.1109/JAS.2018.7511186

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (5270) PDF downloads(530) Cited by()

    Highlights

    • Surveyed the state of the art of AI applications in developing autonomous vehicles.
    • Synthesized major scenarios for leveraging AI for autonomous vehicle applications.
    • Explored major challenges for different AI-driven autonomous vehicle applications.
    • Discussed opportunities for using AI to support autonomous vehicle development.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return