A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 2
Mar.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Jiangkai Peng, Bo Fan, Jiajun Duan, Qinmin Yang and Wenxin Liu, "Adaptive Decentralized Output-Constrained Control of Single-Bus DC Microgrids," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 424-432, Mar. 2019. doi: 10.1109/JAS.2019.1911387
Citation: Jiangkai Peng, Bo Fan, Jiajun Duan, Qinmin Yang and Wenxin Liu, "Adaptive Decentralized Output-Constrained Control of Single-Bus DC Microgrids," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 424-432, Mar. 2019. doi: 10.1109/JAS.2019.1911387

Adaptive Decentralized Output-Constrained Control of Single-Bus DC Microgrids

doi: 10.1109/JAS.2019.1911387
Funds:

the U.S. Office of Naval Research N00014-16-1-3121

the U.S. Office of Naval Research N00014-18-1-2185

the National Natural Science Foundation of China 61673347

the National Natural Science Foundation of China U1609214

the National Natural Science Foundation of China 61751205

More Information
  • A single-bus DC microgrid can represent a wide range of applications. Control objectives of such systems include high-performance bus voltage regulation and proper load sharing among multiple distributed generators (DGs) under various operating conditions. This paper presents a novel decentralized control algorithm that can guarantee both the transient voltage control performance and realize the predefined load sharing percentages. First, the output-constrained control problem is transformed into an equivalent unconstrained one. Second, a two-step backstepping control algorithm is designed based on the transformed model for bus-voltage regulation. Since the overall control effort can be split proportionally and calculated with locally-measurable signals, decentralized load sharing can be realized. The control design requires neither accurate parameters of the output filters nor load measurement. The stability of the transformed systems under the proposed control algorithm can indirectly guarantee the transient bus voltage performance of the original system. Additionally, the high-performance control design is robust, flexible, and reliable. Switch-level simulations under both normal and fault operating conditions demonstrate the effectiveness of the proposed algorithm.

     

  • loading
  • [1]
    L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, "Review on control of DC microgrids and multiple microgrid clusters, " IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 928-948, 2017. http://ieeexplore.ieee.org/document/7890986/citations
    [2]
    Y. Luo, S. Srivastava, M. Andrus, and D. Cartes, "Application of distubance metrics for reducing impacts of energy storage charging in an MVDC based IPS, " in Proc. 2013 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2013, pp. 287-291. http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=6523748
    [3]
    W. Su and J. Wang, "Energy management systems in microgrid operations, " The Electricity Journal, vol. 25, no. 8, pp. 45-60, 2012. doi: 10.1016/j.tej.2012.09.010
    [4]
    Y. Luo, C. Wang, L. Tan, G. Liao, D. Cartes, W. Liu, et al., "Application of generalized predictive control for charging super capacitors in microgrid power systems under input constraints, " in Proc. IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2015, pp. 1708-1713. https://ieeexplore.ieee.org/document/7288204/
    [5]
    R. S. Balog, W. W. Weaver, and P. T. Krein, "The load as an energy asset in a distributed DC smartgrid architecture, " IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 253-260, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5d0de7a48f27cab414370295b9e4f87
    [6]
    T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, "DC microgrids-Part Ⅱ: A review of power architectures, applications, and standardization issues, " IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3528-3549, 2016. doi: 10.1109/TPEL.2015.2464277
    [7]
    L. Herrera, W. Zhang, and J. Wang, "Stability analysis and controller design of DC microgrids with constant power loads." IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 881-888, 2017. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7104425
    [8]
    B. Choi, "Comparative study on paralleling schemes of converter modules for distributed power applications, " IEEE Transactions on Industrial Electronics, vol. 45, no. 2, pp. 194-199, 1998. doi: 10.1109/41.681217
    [9]
    D. Bosich, G. Giadrossi, and G. Sulligoi, "Voltage control solutions to face the CPL instability in MVDC shipboard power systems, " in Proc. AEIT Annual Conference-From Research to Industry: The Need for a More Effective Technology Transfer (AEIT). IEEE, 2014, pp. 1-6. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7002058
    [10]
    P. Magne, B. Nahid-Mobarakeh, and S. Pierfederici, "Active stabilization of dc microgrids without remote sensors for more electric aircraft, " IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2352-2360, 2013. doi: 10.1109/TIA.2013.2262031
    [11]
    P. Lindman and L. Thorsell, "Applying distributed power modules in telecom systems, " IEEE Transactions on Power Electronics, vol. 11, no. 2, pp. 365-373, 1996. doi: 10.1109/63.486187
    [12]
    Y.-K. Chen, Y.-C. Wu, C.-C. Song, and Y.-S. Chen, "Design and implementation of energy management system with fuzzy control for DC microgrid systems, " IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1563-1570, 2013. doi: 10.1109/TPEL.2012.2210446
    [13]
    C. Wang, J. Duan, B. Fan, Q. Yang, and W. Liu, "Decentralized high-performance control of DC microgrids, " IEEE Transactions on Smart Grid, to be published, doi: 10.1109/TSG.2018.2825199.
    [14]
    S. Huth, "DC/DC-converters in parallel operation with digital load distribution control, " in Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE'96, vol. 2. IEEE, 1996, pp. 808-813. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=551047
    [15]
    S. K. Mazumder, M. Tahir, and K. Acharya, "Master--slave current-sharing control of a parallel DC--DC converter system over an RF communication interface, " IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 59-66, 2008. doi: 10.1109/TIE.2007.896138
    [16]
    J. Rajagopalan, K. Xing, Y. Guo, F. Lee, and B. Manners, "Modeling and dynamic analysis of paralleled DC/DC converters with master-slave current sharing control, " in Proc. Applied Power Electronics Conference and Exposition, APEC'96, vol. 2. IEEE, 1996, pp. 678-684. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=500513
    [17]
    T.-F. Wu, Y.-K. Chen, and Y.-H. Huang, "3C strategy for inverters in parallel operation achieving an equal current distribution, " IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 273-281, 2000. doi: 10.1109/41.836342
    [18]
    A. Khorsandi, M. Ashourloo, H. Mokhtari, and R. Iravani, "Automatic droop control for a low voltage DC microgrid, " IET Generation, Transmission & Distribution, vol. 10, no. 1, pp. 41-47, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a4874c9c9ab0d5e4035fbd22c7a351c5
    [19]
    Y. Gu, X. Xiang, W. Li, and X. He, "Mode-adaptive decentralized control for renewable DC microgrid with enhanced reliability and flexibility, " IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 5072-5080, 2014. doi: 10.1109/TPEL.2013.2294204
    [20]
    J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña, and M. Castilla, "Hierarchical control of droop-controlled AC and DC microgrids--A general approach toward standardization, " IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, 2011. doi: 10.1109/TIE.2010.2066534
    [21]
    A. Tah and D. Das, "An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected DC microgrids, " IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 1194-1204, 2016. doi: 10.1109/TSTE.2016.2535264
    [22]
    F. Chen, R. Burgos, D. Boroyevich, and W. Zhang, "A nonlinear droop method to improve voltage regulation and load sharing in DC systems, " in Proc. 1st IEEE International Conference on DC Microgrids (ICDCM). IEEE, 2015, pp. 45-50. https://ieeexplore.ieee.org/document/7152008
    [23]
    V. Nasirian, A. Davoudi, F. L. Lewis, and J. M. Guerrero, "Distributed adaptive droop control for DC distribution systems, " IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 944-956, 2014. doi: 10.1109/TEC.2014.2350458
    [24]
    J. M. Guerrero, L. Hang, and J. Uceda, "Control of distributed uninterruptible power supply systems, " IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2845-2859, 2008. doi: 10.1109/TIE.2008.924173
    [25]
    K. T. Small, "Single wire current share paralleling of power supplies, " Jan. 5 1988, US Patent 4, 717, 833.
    [26]
    K. Wang, X. Huang, B. Fan, Q. Yang, G. Li, and M. L. Crow, "Decentralized power sharing control for parallel-connected inverters in islanded single-phase micro-grids, " IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6721-6730, 2018. doi: 10.1109/TSG.2017.2720683
    [27]
    A. Wright and C. Christopoulos, Electrical power system protection. London, UK: Chapman & Hall, 1993.
    [28]
    Q. Yang, S. Jagannathan, and Y. Sun, "Robust integral of neural network and error sign control of MIMO nonlinear systems, " IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 12, pp. 3278-3286, 2015. doi: 10.1109/TNNLS.2015.2470175
    [29]
    K.-S. Low and R. Cao, "Model predictive control of parallel-connected inverters for uninterruptible power supplies, " IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2884-2893, 2008. doi: 10.1109/TIE.2008.918474
    [30]
    B. Fan, C. Wang, Q. Yang, W. Liu, and G. Wang, "Performance guaranteed control of flywheel energy storage system for pulsed power load accommodation, " IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3994-4004, 2018. doi: 10.1109/TPWRS.2017.2774273
    [31]
    M. Krstic, I. Kanellakopoulos, P. V. Kokotovic, et al., Nonlinear and Adaptive Control Design. New York, NY, USA: John Wiley & Sons, Inc., 1995, vol. 222.
    [32]
    M. Chen, S. S. Ge, and B. Ren, "Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints, " Automatica, vol. 47, no. 3, pp. 452-465, 2011. doi: 10.1016/j.automatica.2011.01.025
    [33]
    S. S. Ge and C. Wang, "Adaptive neural control of uncertain MIMO nonlinear systems, " IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 674-692, 2004. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_08a3865e07631b3fc7e14586ae1e7529

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (1404) PDF downloads(77) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return