IEEE/CAA Journal of Automatica Sinica  2014, Vol.1 Issue (2): 193-203   PDF    
Distributed Average Consensus in Multi-agent Networks with Limited Bandwidth and Time-delays
Wenhui Liu1, Feiqi Deng1 , Jiarong Liang2, Haijun Liu3    
1. College of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China;
2. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China;
3. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
Abstract: This paper studies the distributed average consensus problem of multi-agent digital networks with time-delays. For the network, each agent can only exchange symbolic data with its neighbours. We provide a distributed average consensus protocol which uses the quantized and time-delay information. We consider two types of dynamic encoders/decoders in our protocol. One uses inverse proportion function as scaling function, while the other uses exponential function as scaling function. All agents can reach average consensus asymptotically with our protocol. Furthermore, we show that the average consensus protocol is robust to finite symmetric time-delays, but is sensitive to asymmetric time-delays that will destroy the average consensus of the networks. Finally, simulations are presented to illustrate validity of our theoretical results.
Key words: Multi-agent networks     average consensus     communication constraints     quantization     time-delays    
Ⅰ. INTRODUCTION

The distributed consensus problem of multi-agent networks has attracted great interests in recent years. It has gained wide applications in practice,such as information fusion in sensor networks,load balancing in processor networks,clock synchronization,and multi-agent coordination and flocking. The distributed average consensus usually means to design a network protocol such that the states of all agents asymptotically reach the average value of their initial states as time goes on. In practice,the communication bandwidth and time-delays are important constraint conditions. The conventional consensus protocols are not appropriate for them. Recently,more and more researchers study the distributed consensus problem of multi-agent networks with quantization information and/or time-delays,such as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and references therein.

There are many distributed algorithms to achieve consensus in literature,for example,classical consensus algorithms, Gossip algorithms[1, 2, 3],sequence averaging algorithm[4], etc. Here,we emphasize that the design of efficient quantization ways (namely smart quantization techniques) is very important. In [5, 6, 7, 8, 9],they have given some quantization techniques,for example,uniform quantization strategy with finite-level[5, 6] or infinite-level[7],the logarithmic quantization strategy[8, 9] and the ``zoom in-zoom out'' uniform quantization strategy[8, 9],etc.

In [5, 7, 9],the distributed average consensus problem of multi-agent systems with quantization information was studied. However,only the real-time communication was considered. In [10], the average consensus problem for multi-agent networks with communication delays and limited data rate was dealt with. Our paper will further consider the distributed average consensus problem of multi-agent systems with limited communication data rate and time-delays.~Generally,in order to control and process a complex dynamic network,we do not transform it into a single high-dimensional system by simply increasing dimensions[16]. Thus,our paper will not construct a high-dimensional augmented system as in [10]. Furthermore,we show that the average consensus protocol ((4) in this paper,(5) in [10]) is robust to finite symmetric time-delays,but is sensitive to asymmetric time-delays (see Remark 3 in Section III-A).

Another main contribution of our paper is that we study two types of dynamic encoders/decoders. One uses inverse proportion function as scaling function,while the other uses exponential function as scaling function. We prove that all agents can reach average consensus asymptotically with our protocol. We believe that different encoders/decoders have different applications in practice.

The remainder of this paper is organized as follows. In Section II, we present the model of networks,propose a distributed protocol, and formulate the problem to be investigated. Section III presents the main results. We prove that the multi-agent network can reach average consensus asymptotically. The protocol with an inverse proportion function as scaling function is considered in Section III-A,and the protocol with an exponential function as scaling function is considered in Section III-B. Simulation results are given in Section IV. Section V draws the conclusions.

Notation. $R^{n}$ is $n$-dimensional real Euclidean space. $A^{\mathrm{T}}$ denotes the transpose of $A$. $1$ denotes a column vector of all ones. The maximum integer less than or equal to $x$ is denoted by $\lfloor x\rfloor$. The minimum integer greater than or equal to $x$ is denoted by $\lceil x\rceil$. $|\cdot|_{2}$ and $|\cdot|_{\infty}$ respectively denote $2$-norm and $\infty$-norm of vector or matrix. $\sum_{i=0}^{l}(\cdot)$ is considered as 0 for $l<0$.

Let $\mathcal{G}:=(\mathcal{V},\mathcal{E},A)$ be a simple weighted digraph,with the set of nodes $\mathcal{V}=\{1,\cdots,N\}$,the set of edges $\mathcal{E}\subseteq \mathcal{V}\times \mathcal{V}$,and the weighted adjacency matrix $A=(a_{ij})_{N\times N}$. $v_{i}$ (or $i$) denotes the $i$-th node of $\mathcal{G}$. $(i,~j)\in \mathcal{E}$ denotes a directed edge of $\mathcal{G}$ from $i$ to $j$. $a_{ij}\geq 0$ is the adjacency elements such that $a_{ij}>0 \Leftrightarrow (j,i)\in \mathcal{E}$. The set of in-neighbours of the $i$-th node is denoted by $N_{i}:=\{j\in\mathcal{V}:~(j,~i)\in \mathcal{E}\}$. $d_{i}:=\sum_{j=1}^{N}a_{ij}$ denotes the in-degree of the $i$-th node. $d^{\ast}:= \max\{d_{1},\cdots, d_{N}\}$ denotes the maximal in-degree of $\mathcal{G}$. The Laplacian matrix of $\mathcal{G}$ is defined as $L=D-A$,where $D=\mathrm{diag} \{ d_{1},\cdots,d_{N}\}$. $\mathcal{G}=(\mathcal{V},~\mathcal{E},~A)$ is a simple weighted undirected graph,if $(i,~j)\in \mathcal{V} \Leftrightarrow (j,~i)\in \mathcal{V}$.

Ⅱ. PRELIMINARIES AND PROBLEM FORMULATION

In this paper,we consider the average consensus problem for a network of agents with the dynamics of

$ \begin{aligned} &x_{i}(t+1)=x_{i}(t)+hu_{i}(t),\\ &t=0,1,\cdots,\quad i=1,2,\cdots,N, \end{aligned} $ (1)

where $x_{i}(t)\in R$ and $u_{i}(t)\in R$ are, respectively,the state and input of the $i$-th agent,and $h$ is the control gain. The communications among agents are modeled as a simple undirected weighted graph $\mathcal{G}= (\mathcal{V},\mathcal{E},A)$,where $\mathcal{V}=\{1,\cdots,N\}$ is a nonempty set of $N$ nodes and each node denotes an agent, $\mathcal{E}$ denotes the edge set and each edge denotes a communication channel.

Distributed average consensus control means designing a distributed protocol for the dynamic network,such that the states of all agents converge to the average value of their initial values.

Definition 1. The multi-agent network (1) is said to reach average consensus asymptotically,if for each initial condition $x_{0}:= [x_{1}(0),\cdots,x_{N}(0)]^{\mathrm{T}}$,

$ \lim\limits_{t\rightarrow \infty}x_{i}(t,~x_{0})=\frac{{\bf 1}^{\mathrm{T}}x_{0}}{N},~~~i=1,2,\cdots,N. $

For the multi-agent network (1),a classic distributed average consensus protocol was proposed in [11] as

$ u_{i}(t)=\Sigma_{j\in N_{i}} a_{ij}(x_{j}(t)-x_{i}(t)). $ (2)

The $i$-th agent needs the exact state information of its neighbours. However,(2) may be too rough when the network links represent actual digital communication channels. For digital networks,only symbolic data can be exchanged among agents[5, 9].

Some distributed protocols which use the quantized information were proposed as

$ \begin{align} &u_{i}(t)=\Sigma_{j\in N_{i}} a_{ij}(q(x_{j}(t)-q(x_{i}(t))),~\mbox{(see [7])}\notag\\ &u_{i}(t)=\Sigma_{j\in N_{i}} a_{ij}(\hat{x}_{j}(t)-\hat{x}_{i}(t)),~\mbox{(see [9])}\notag\\ &u_{i}(t)=\Sigma_{j\in N_{i}}a_{ij}(\hat{x}_{ji}(t)-\xi_{i}(t)),~\mbox{(see [5])} \end{align} $ (3)

where $q(\cdot)$ is a uniform quantizer (see bellow or [7]), $\hat{x}_{i}(t)$ is the estimate of state $x_{i}(t)$ (see [9]), $\xi_{i}(t)\in R$ and $\hat{x}_{ji}(t)\in R$ are the internal state of $\Phi_{i}$ and the output of $\Psi_{ji}$, respectively (see bellow or [5]).

For the practical multi-agent digital network (1),we assume that each agent can only exchange symbolic data with its neighbours and the network has finite time-delays.

We propose a time-delay distributed protocol as

$ \begin{aligned} &u_{i}(t)=\Sigma_{j\in N_{i}} a_{ij}(\hat{x}_{ji}(t-1)-\xi_{i}(t-1)),\\ &t=1,2,\cdots,\quad ~i=1,2,\cdots,N, \end{aligned} $ (4)

where $\xi_{i}(t)\in R$ and $\hat{x}_{ji}(t)\in R$ are,the internal state of $\Phi_{i}$ and the output of $\Psi_{ji}$,respectively (see bellow).

The form of encoder $\Phi_{i}$/decoder $\Psi_{ji}$ in this paper is similar to the one in [5],but they are not exactly the same. Because we use some different scaling functions for them.

The difference encoder $\Phi_{i}$ of the $i$-th agent is given by

$ \begin{aligned} &\xi_{i}(0)=0,\\ &\xi_{i}(t)=g(t-1)\Delta_{i}(t)+\xi_{i}(t-1),\\ &\Delta_{i}(t)=q(\frac{x_{i}(t)-\xi_{i}(t-1)}{g(t-1)}),~~~t=1,2,\cdots, \end{aligned} $ (5)

where $\xi_{i}(t)\in R$ is the internal state of $\Phi_{i}$ and $\Delta_{i}(t)$ is the output of $\Phi_{i}$. $\Delta_{i}(t)$ will be sent to its neighbours along communication channels. Perhaps these neighbours cannot get data $\Delta_{i}(t)$ on time.

For each communication channel $(j,~i)\in \mathcal{E}$,the $i$-th agent receives $\Delta_{j}(t)$,and then uses the following decoder $\Psi_{ji}$ to recover $\xi_{j}(t)$ which is the estimated value of state $x_{j}$.

$ \begin{aligned} &\hat{x}_{ji}(0)=0,\\ &\hat{x}_{ji}(t)=g(t-1)\Delta_{j}(t)+\hat{x}_{ji}(t-1),~~~t=1,2,\cdots, \end{aligned} $ (6)

where $\hat{x}_{ji}(t)\in R$ is the output of $\Psi_{ji}$.

Here,$q(\cdot)$ is a finite-level uniform quantizer,and $g(\cdot)>0$ is a scaling function.

The quantizer $q(\cdot)$ is a map from $R$ to the set of quantized levels $\Gamma:=\{0,\pm1,\cdots,\pm K\}$. In this paper, the associated quantizer $q(\cdot)$ is given by

$ q(x) = \left\{ {\begin{array}{*{20}{c}} 0&{ - \frac{1}{2} < x < \frac{1}{2},}\\ {i,}&{\frac{{2i - 1}}{2} \le x < \frac{{2i + 1}}{2},i = 1, \cdots ,K - 1,}\\ {K,}&{x \ge \frac{{2K - 1}}{2},}\\ { - q( - x),{\rm{ }}}&{x \le \frac{{ - 1}}{2}.} \end{array}} \right. $ (7)

By observing the encoders and decoders,it is easy to know that $\hat{x}_{ji}(t)=\xi_{j}(t)$ for $j=1,2,\cdots,N$,$i\in N_{j}$, $t=0,1,2,\cdots$.

Denote

$ \begin{aligned} &x(t)=[x_{1}(t),\cdots ,x_{N}(t)]^{\mathrm{T}},\\ &\xi(t)=[\xi_{1}(t),\cdots ,\xi_{N}(t)]^{\mathrm{T}},\\ &e(t)=x(t)-\xi(t),\\ &\delta(t)=x(t)-{J}x(t), \end{aligned} $

where ${J}:= (1/N)11^{\mathrm{T}}$.

Equations (4) and (5) can be respectively rewritten as

$ u(t)=-{L}\xi(t-1),~~~t=1,2,\cdots, $ (8)

and

$ \begin{aligned} &\xi(0)=0,\\ &\xi(t)=g(t-1)\Delta(t)+\xi(t-1),\\ &\Delta(t)={Q}(\frac{x(t)-\xi(t-1)}{g(t-1)}),~~~t=1,2,\cdots, \end{aligned} $ (9)

where ${Q}([y_{1},\cdots,y_{N}]^{\mathrm{T}}):=[q(y_{1}),\cdots,q(y_{N})]^{\mathrm{T}}$.

Substituting (8),(9) and (6) into system (1) leads to

$ \begin{aligned} &x(t+1)=x(t)-h{L}\xi(t-1),\\ &\xi(t)=g(t-1){Q}(\frac{x(t)-\xi(t-1)}{g(t-1)})+\xi(t-1),\\ &x(1)=x(0)=x_{0},~\xi(0)=0, \end{aligned} $ (10)

for $t=1,2,\cdots$.

Note that ${JL}=0$,we have ${J}x(t+1)={J}x(t)$. That is,

$ \frac{1}{N}\sum_{i=1}^{N}x_{i}(t)=\frac{1}{N}\sum_{i=1}^{N}x_{i}(0),~~~t=0,1,\cdots. $ (11)

This means that the closed-loop system (10) preserves average value of the states.

Ⅲ. MAIN RESULTS

For our mentioned multi-agent networks,we make the following assumptions.

Assumption 1. $\mathcal{G}= (\mathcal{V},~\mathcal{E},~A)$ is fixed undirected connected information exchange topology.

Assumption 2. $|x_{0}|_{\infty}\leq C_{1}$, $|\delta_{0}|_{\infty}\leq C_{2}$,where $C_{1}$ and $C_{2}$ are known nonnegative constants.

Remark 1. For Assumption 1,we have $0=\lambda_{1}<\lambda_{2}\leq\cdots \leq \lambda_{N}$,where $\lambda_{i}:= \lambda_{i}({L})$ is the eigenvalue of the Laplacian matrix ${L}$ of $\mathcal{G}$[17]. For Assumption 2, we accept Remark 6 in [5]. That is,we have a good estimate with the initial states.

Lemma 1[5]. If Assumption 1 holds and $0

Lemma 2. If Assumption 1 holds and $0

$ \begin{aligned} &a_{h}:= \max_{2\leq i \leq N}\{(1+\sqrt{1-4h\lambda_{i}})/2\},\\ &b_{h}:= \max_{2\leq i \leq N}\{(1-\sqrt{1-4h\lambda_{i}})/2\}. \end{aligned} $

Proof. Note that $\mathcal{G}$ is connected. It is easy to complete the proof,so we omit the details.

Lemma 3. For any positive integers $k$ and $r$,

$ \sum_{i=0}^{k-1}\frac{r+k+1}{r+k-1-i}\leq \frac{r+k+1}{r+k-1}\sum_{i=0}^{k-1}(\frac{r+1}{r})^{i}. $

Proof. It is easy to complete the proof,so we omit the details.

We prove that the network can achieve average consensus asymptotically with protocol (4). In Section III-A,we choose an inverse proportion function as scaling function. In Section III-B, we choose an exponential function as scaling function.

A. Distributed Protocol with an Inverse Proportion Function as Scaling Function

In Remark 9 of [6],it is claimed that the digital network can achieve average consensus asymptotically. If we choose $g(t)=\frac{g_{0}}{(t+q)^{p}}$ $(g_{0}>0,p>0,q>0)$ as scaling function in encoders/decoders and use the following protocol

$ u_{i}(t)=\Sigma_{j\in N_{i}} a_{ij}(t)(\hat{x}_{ji}(t)-\xi_{ij}(t)), $

where $\xi_{ij}(t)\in R$ and $\hat{x}_{ij}(t)\in R$ are the internal state of $\Phi_{ij}$ and the output of $\Psi_{ij}$,respectively[6].

In practice,the real-time data may be unavailable for the control input,so we consider the time-delay distributed protocol (4). For the sake of convenience,we choose $g(t)=\frac{g_{0}}{t+r}$ as scaling function.

Theorem 1. Suppose Assumptions 1 and 2 hold. For any given $h\in (0,~1/(4\lambda_{N}))$,integer $r> {1}/{(1-a_{h})}$,integer $K\geq \lceil M_{1}(h,~r)\rceil$ and

$ g_{0}\geq\max\{ \frac{rC_{1}}{K+\frac{1}{2}},~\frac{2r(C_{2}+h\lambda_{N}C_{1})(1-\frac{r}{r-1}a_{h})}{h\lambda_{N}} \}, $ (12)

where $a_{h},~b_{h}$ are given by Lemma 2 and

$ \begin{aligned} M_{1}(h,~r):= &\frac{1}{2(r+1)}+\frac{hd^{\ast}(r+2)}{r}+\\ &\frac{h^{2}\lambda_{N}^{2}\sqrt{N}(r+4)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}. \end{aligned} $

Then under the protocol given by (4)-(6) with the $(2K+1)$-level uniform quantizer (7) and the scaling function $g(t)=\frac{g_{0}}{t+r}$,the multi-agent network (1) can achieve average consensus asymptotically. That is,the closed-loop system (10) satisfies

$ \lim\limits_{t\rightarrow \infty}x(t)=Jx_{0}. $

Furthermore,the convergence rate is at least ${\rm O}(\frac{1}{t})$. Actually,

$ \lim_{t\rightarrow\infty} \sup\frac{|x(t)-{J}x(0)|_{2}}{\frac{1}{t}} \leq \frac{g_{0}h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}. $

Proof. We choose $h,~r,~K,~g_{0}$ which satisfy the theorem$'$s conditions.

By (10) and ${LJ}={JL}=0$,we have

$ x(t+1)-\xi(t)=e(t)+h{L}e(t-1)-h{L}\delta(t-1)$, $
$ \delta(t+1)=\delta(t)-h{L}\delta(t-1)+h{L}e(t-1) $
$ \begin{aligned} e(t+1)=&x(t+1)-\xi(t)-g(t){Q}(\frac{x(t+1)-\xi(t)}{g(t)}) =\\ &e(t)+h{L}e(t-1)-h{L}\delta(t-1)-\\ &g(t){Q}(\frac{e(t)+h{L}e(t-1)-h{L}\delta(t-1)}{g(t)}), \end{aligned} $

for $t=1,2,\cdots$. Specifically,we have $\delta(1)=\delta(0)=x_{0}-{J}x_{0}$,$e(0)=x_{0}$, $e(1)=x_{0}-\frac{g_{0}}{r}{Q}(\frac{r}{g_{0}}x_{0})$.

Let $w(t)=\frac{\delta(t)}{g(t)}$ and $z(t)=\frac{e(t)}{g(t)}$ for $t=0,1,\cdots$. Then we have

$ \begin{aligned} w(t+1)=&\frac{r+t+1}{r+t}w(t)-h\frac{r+t+1}{r+t-1}{L}w(t-1)+\\ &h\frac{r+t+1}{r+t-1}{L}z(t-1),\\ z(t+1)=&\frac{r+t+1}{r+t}D(t), \end{aligned} $ (13)

where $D(t)=z(t)+h\frac{r+t}{r+t-1}{L}z(t-1)-h\frac{r+t}{r+t-1}{L}w(t-1)-{Q}[z(t)+ h\frac{r+t}{r+t-1}{L}z(t-1)-h\frac{r+t}{r+t-1}{L}w(t-1)]$ for $t=1,2,\cdots$. Specifically,we have $w(0)=\frac{r}{g_{0}}\delta(0)$, $w(1)=\frac{r+1}{g_{0}}\delta(0)$,$z(0)=\frac{r}{g_{0}}x_{0}$, $z(1)=\frac{r+1}{g_{0}}x_{0}-\frac{r+1}{r}{Q}(\frac{r}{g_{0}}x_{0})$ and $D(1)=z(1)-{Q}(z(1))$.

Now,we claim that the quantizer will never be saturated. That is, $|\frac{x(t+1)-\xi (t)}{g(t)}{{|}_{\infty }}\le K+\frac{1}{2}$ for $t\geq 0$.

Indeed,we have $|\frac{x(1)-\xi(0)}{g(0)}|_{\infty}=|\frac{r}{g_{0}}x_{0}|_{\infty}\leq \frac{rC_{1}}{g_{0}}\leq K+\frac{1}{2}$ and $|z(1)|_{\infty}\leq \frac{r+1}{2r}$.

Noting that

$ \begin{aligned} |\frac{x(t+1)-\xi(t)}{g(t)}|_{\infty} =&|z(t)+h\frac{r+t}{r+t-1}{L}z(t-1)-\\&h\frac{r+t}{r+t-1}{L}w(t-1)|_{\infty}, \end{aligned} $

we only need to prove

$ |z(t)+h\frac{r+t}{r+t-1}{L}z(t-1)-h\frac{r+t}{r+t-1}{L}w(t-1)|_{\infty}\leq K+\frac{1}{2} $

for $t=1,2,\cdots $.

Firstly,it is easy to get $|z(1)+h\frac{r+1}{r}{L}z(0)-h\frac{r+1}{r}{L}w(0)|_{\infty}=|z(1)|_{\infty}\leq \frac{r+1}{2r}< K+\frac{1}{2}$ and $|D(1)|_{\infty}\leq \frac{1}{2}$,$|z(2)|_{\infty}\leq \frac{r+2}{2(r+1)}$.

Secondly,we assume that

$ |z(t)+h\frac{r+t}{r+t-1}{L}z(t-1)-h\frac{r+t}{r+t-1}{L}w(t-1)|_{\infty}\leq K+\frac{1}{2} $

for $t=1,2,\cdots,k$,then we have $|D(t)|_{\infty}\leq \frac{1}{2}$ and $|z(t+1)|_{\infty}\leq \frac{r+t+1}{2(r+t)}$ for $t=1,2,\cdots,k$.

Lastly,for $t=k+1$ we will prove

$ |z(k+1)+h\frac{r+k+1}{r+k}{L}z(k)-h\frac{r+k+1}{r+k}{L}w(k)|_{\infty}\leq K+\frac{1}{2}. $

Since ${L}$ is a real symmetric matrix,we can take an orthogonal matrix $U:= [1/\sqrt{N},\phi_{2},\cdots,\phi_{N}]$ which is defined by $\phi_{i}^{\mathrm{T}}{L}=\lambda_{i}\phi_{i}^{\mathrm{T}}$, $i=2,\cdots,N$. Let $\hat{w}(t)=[\hat{w}_{1}(t),~\hat{w}_{2}^{\mathrm{T}}(t)]^{\mathrm{T}}=U^{\mathrm{T}}w(t)$, where

$ \begin{aligned} &\hat{w}_{1}(t)= (1^{\mathrm{T}}/\sqrt{N})w(t)=\frac{1^{\mathrm{T}}}{\sqrt{N}g(t)}[x(t)-{J}x(t)]=0,\\ &\hat{w}_{2}(t)= \phi ^{\mathrm{T}}w(t)= [\phi_{2},\cdots,\phi_{N}]^{\mathrm{T}}w(t). \end{aligned} $

By (13),we have

$ \begin{aligned} \hat{w}_{2}(t+1)=&\frac{r+t+1}{r+t}\hat{w}_{2}(t)-\\ &h\frac{r+t+1}{r+t-1}\mathrm{diag}\{\lambda_{2},\cdots,\lambda_{N}\}\hat{w}_{2}(t-1) +\\ &h\frac{r+t+1}{r+t-1}\phi^{\mathrm{T}}{L}z(t-1). \end{aligned} $

That is,

$ \begin{aligned} \frac{\hat{w}_{2}(t+1)}{r+t+1} =&\frac{\hat{w}_{2}(t)}{r+t}-\mathrm{diag}\{h\lambda_{2},\cdots,h\lambda_{N}\}\frac{\hat{w}_{2}(t-1)}{r+t-1}+\\ & h\phi^{\mathrm{T}}{L}\frac{z(t-1)}{r+t-1}~~~~t=1,2,\cdots. \end{aligned} $

Let $X:=\frac{1}{2}\mathrm{diag}\{1+\sqrt{1-4h\lambda_{2}},\cdots,1+\sqrt{1-4h\lambda_{N}}\}$ and $Y:=\frac{1}{2}\mathrm{diag}\{1-\sqrt{1-4h\lambda_{2}},\cdots,1-\sqrt{1-4h\lambda_{N}}\}$, then $X+Y=I$, $XY=h\mathrm{diag}\{\lambda_{2},\cdots,\lambda_{N}\}$, $|X|_{2}=a_{h}$,$|Y|_{2}=b_{h}$ (see Lemma 2).

We have

$ \begin{aligned} &\frac{\hat{w}_{2}(t+1)}{r+t+1}-Y\frac{\hat{w}_{2}(t)}{r+t}=\\ &\qquad X[\frac{\hat{w}_{2}(t)}{r+t}-Y\frac{\hat{w}_{2}(t-1)}{r+t-1}]+h\phi^{\mathrm{T}}{L}\frac{z(t-1)}{r+t-1}=\\ &\qquad X^{t}[\frac{\hat{w}_{2}(1)}{r+1}-Y\frac{\hat{w}_{2}(0)}{r}]+hX^{t-1}\phi ^{\mathrm{T}}{L}\frac{z(0)}{r}+\\ &\qquad \sum_{i=0}^{t-2}hX^{i}\phi ^{\mathrm{T}}{L}\frac{z(t-i-1)}{r+t-i-1}=\\ &\qquad X^{t+1}\frac{\hat{w}_{2}(0)}{r}+\frac{h}{r}X^{t-1}\phi ^{\mathrm{T}}{L}z(0)+\\ &\qquad \sum_{i=0}^{t-2}hX^{i}\phi ^{\mathrm{T}}{L}\frac{z(t-i-1)}{r+t-i-1}, \end{aligned} $

for $t=1,2,\cdots$,where $\frac{\hat{w}_{2}(1)}{r+1}-Y\frac{\hat{w}_{2}(0)}{r}=X\frac{\hat{w}_{2}(0)}{r}$.

Then we have

$ \begin{aligned} &\frac{\hat{w}_{2}(t+1)}{r+t+1}=Y\frac{\hat{w}_{2}(t)}{r+t}+f(t)=\\ &\qquad Y^{t}\frac{\hat{w}_{2}(0)}{r}+\sum_{j=0}^{t-1}Y^{j}f(t-j)=\\ &\qquad[Y^{t}+\sum_{j=0}^{t-1}Y^{j}X^{t-j+1}]\frac{\hat{w}_{2}(0)}{r} +\frac{h}{r}(\sum_{j=0}^{t-1}Y^{j}X^{t-j-1})\phi ^{\mathrm{T}}{L} z(0)+\\ &\qquad \sum_{j=0}^{t-1}\sum_{i=0}^{t-j-2}[hY^{j}X^{i}\phi ^{\mathrm{T}}{L}\frac{z(t-j-i-1)}{r+t-j-i-1}], \end{aligned} $

where $f(t):= X^{t+1}\frac{\hat{w}_{2}(0)}{r}+\frac{h}{r}X^{t-1}\phi ^{\mathrm{T}}{L}z(0) +\sum_{i=0}^{t-2}hX^{i}\phi ^{\mathrm{T}}{L}\frac{z(t-i-1)}{r+t-i-1}$ for $t=1,2,\cdots$.

Noting that $\hat{w}(t)=U^{\mathrm{T}}w(t)$,$\hat{w}_{1}(t)=0$, and $\hat{w}_{2}(t)=\phi ^{\mathrm{T}}w(t)$,we have

$ \begin{aligned} w(t)=&U\hat{w}(t) =\phi \hat{w}_{2}(t)=\\ &(r+t)\{\phi[Y^{t-1}+\sum_{j=0}^{t-2}Y^{j}X^{t-j}]\frac{\phi ^{\mathrm{T}}w(0)}{r}+\\ & \frac{h}{r}\phi(\sum_{j=0}^{t-2} Y^{j}X^{t-j-2})\phi ^{\mathrm{T}}{L} z(0)+\\ &\phi\sum_{j=0}^{t-2} \sum_{i=0}^{t-j-3}[hY^{j}X^{i}\phi ^{\mathrm{T}}{L}\frac{z(t-j-i-2)}{r+t-j-i-2}]\} \end{aligned} $

for $t=2,3,\cdots$.

Now we estimate the three terms on the right-hand side of the above equation,separately.

Noting that $|x|_{\infty}\leq |x|_{2}\leq \sqrt{N}|x|_{\infty}$ for $x\in R^{N}$ and $|\phi|_{2}=1$,we have

$ \begin{aligned} &|\phi[Y^{t-1}+\sum_{j=0}^{t-2}Y^{j}X^{t-j}]\frac{\phi^{\mathrm{T}}w(0)}{r}|_{2} \leq \\ &~~~[b_{h}^{t-1} +a_{h}^{t}\sum_{j=0}^{t-2}(\frac{b_{h}}{a_{h}})^{j}]\frac{\sqrt{N}|w(0)|_{\infty}}{r} \leq \\ &~~~\frac{\sqrt{N}C_{2}}{g_{0}} b_{h}^{t-1} +\frac{\sqrt{N}C_{2}a_{h}^{2}}{g_{0}(a_{h}-b_{h})}a_{h}^{t-1}\leq \\ &~~~\frac{\sqrt{N}C_{2}}{g_{0}} b_{h}^{t-1} +\frac{\sqrt{N}C_{2}}{g_{0}(a_{h}-b_{h})}a_{h}^{t-1},~~~~t=2,3,\cdots, \end{aligned} $
$ \begin{align} & |\frac{h}{r}\phi (\sum\limits_{j=0}^{t-2}{{{Y}^{j}}}{{X}^{t-j-2}}){{\phi }^{\text{T}}}Lz(0){{|}_{2}}\le \\ & \frac{h}{r}a_{h}^{t-2}[\sum\limits_{j=0}^{t-2}{{{(\frac{{{b}_{h}}}{{{a}_{h}}})}^{j}}}]{{\lambda }_{N}}\sqrt{N}|z(0){{|}_{\infty }}\le \\ & \frac{h{{\lambda }_{N}}\sqrt{N}{{C}_{1}}}{{{g}_{0}}({{a}_{h}}-{{b}_{h}})}a_{h}^{t-1},~~~~t=2,3,\cdots . \\ \end{align} $

We have assumed that $|z(t)|_{\infty}\leq \frac{r+t}{2(r+t-1)}$ for $t=1,2,\cdots,k+1$,then

$ \begin{aligned} &|\phi\sum_{j=0}^{t-2} \sum_{i=0}^{t-j-3}[h(r+t)Y^{j}X^{i}\phi ^{\mathrm{T}}{L}\frac{z(t-j-i-2)}{r+t-j-i-2}]|_{2}\leq\\ &\quad \frac{h\lambda_{N}\sqrt{N}}{2}\sum_{j=0}^{t-2}\sum_{i=0}^{t-j-3}[\frac{r+t}{r+t-3}(\frac{r}{r-1})^{j}(\frac{r}{r-1})^{i}b_{h}^{j}a_{h}^{i}]\leq\\ &\quad \frac{h\lambda_{N}\sqrt{N}(r+t)}{2(1-\frac{r}{r-1}a_{h})(r+t-3)} \{\frac{1-(\frac{r}{r-1}b_{h})^{t-1}}{1-\frac{r}{r-1}b_{h}}-\\ &\quad (\frac{r}{r-1}a_{h})^{t-2}\frac{a_{h}}{a_{h}-b_{h}}\}\leq \\ &\quad \frac{h\lambda_{N}\sqrt{N}(r+t)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})(r+t-3)}[1-(\frac{r}{r-1}b_{h})^{t-1}]-\\ &\quad \frac{h\lambda_{N}\sqrt{N}(r+t)}{2(1-\frac{r}{r-1}a_{h})(a_{h}-b_{h})(r+t-3)}(\frac{r}{r-1})^{t-2}a_{h}^{t-1} \end{aligned} $

for $t=3,4,\cdots,k$. So we have

$ |w(1)|_{2}=|\frac{r+1}{g_{0}}\delta(0)|_{2}\leq\frac{\sqrt{N}C_{2}(r+1)}{g_{0}}, $
$ |w(2)|_{2}=|\frac{r+2}{g_{0}}\delta(0)|_{2}\leq\frac{\sqrt{N}C_{2}(r+2)}{g_{0}}, $
$ \begin{aligned} &|w(t)|_{2} \leq\frac{h\lambda_{N}\sqrt{N}(r+t)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})(r+t-3)}+\\ &\quad \left[\frac{C_{2}}{g_{0}}+ \frac{h\lambda_{N}C_{1}}{g_{0}} -\frac{h\lambda_{N}(\frac{r}{r-1})^{t-2}}{2(1-\frac{r}{r-1}a_{h})(r+t-3)}\right]\times\\ &\quad \frac{\sqrt{N}(r+t)a_{h}^{(t-1)}}{a_{h}-b_{h}}+\\ &\quad\left[\frac{C_{2}}{g_{0}}-\frac{h\lambda_{N}(\frac{r}{r-1})^{t-1}}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})(r+t-3)}\right]\times\\ &\quad \sqrt{N}(r+t)b_{h}^{(t-1)}\leq\\ &\quad \frac{h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r},~~~~t=3,4,\cdots,k, \end{aligned} $

where $\frac{C_{2}+h\lambda_{N}C_{1}}{g_{0}}< \frac{h\lambda_{N}(\frac{r}{r-1})^{t-2}}{2(1-\frac{r}{r-1}a_{h})(r+t-3)}$ and $\frac{C_{2}}{g_{0}}< \frac{h\lambda_{N}(\frac{r}{r-1})^{t-1}}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})(r+t-3)}$ by Appendix. By (12),we have $g_{0}\geq \frac{2r(C_{2}+h\lambda_{N}C_{1})(1-\frac{r}{r-1}a_{h})}{h\lambda_{N}}$, then we have $\frac{\sqrt{N}C_{2}(r+2)}{g_{0}}\leq\frac{h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}$ and $\frac{h\lambda_{N}\sqrt{N}C_{2}(r+3)}{g_{0}}\leq \frac{h^{2}\lambda_{N}^{2}\sqrt{N}(r+4)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}$.

Thus,

$ |w(t)|_{2}\leq\frac{h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r},~~~t=1,2,\cdots,k, $

and

$ \begin{aligned} &|z(k+1)+h\frac{r+k+1}{r+k}{L}z(k)-h\frac{r+k+1}{r+k}{L}w(k)|_{\infty}\leq\\ &\qquad \frac{r+k+1}{2(r+k)}+\frac{hd^{\ast}(r+k+1)}{(r+k-1)} +\\ &\qquad \left\{ \begin{array}{ll} \frac{h\lambda_{N}\sqrt{N}C_{2}(r+k+1)}{g_{0}},& k=1,2 \\ \frac{h^{2}\lambda_{N}^{2}\sqrt{N}(r+3)(r+k+1)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r(r+k)},&k=3,4,\cdots \end{array} \right. \leq \\ &\qquad \frac{1}{2}+\frac{1}{2(r+1)}+\frac{hd^{\ast}(r+2)}{r}+\\ &\qquad \left\{ \begin{array}{ll} \frac{h\lambda_{N}\sqrt{N}C_{2}(r+3)}{g_{0}} & k=1,2 \\ \frac{h^{2}\lambda_{N}^{2}\sqrt{N}(r+4)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r} & k=3,4,\cdots \end{array} \right. \leq \\ &\qquad \frac{1}{2}+\frac{1}{2(r+1)}+\frac{hd^{\ast}(r+2)}{r}+\\ &\qquad \frac{h^{2}\lambda_{N}^{2}\sqrt{N}(r+4)}{2(1-\frac{r}{r-1}a_{h}) (1-\frac{r}{r-1}b_{h})r}\leq\\ &\qquad \lceil M_{1}(h,~r)\rceil+ \frac{1}{2}\leq K+\frac{1}{2},~~~~k=1,2,\cdots. \end{aligned} $

By induction,we conclude that

$ |z(t)+h\frac{r+t}{r+t-1}{L}z(t-1)-h\frac{r+t}{r+t-1}{L}w(t-1)|_{\infty}\leq K+\frac{1}{2} $

for $t=1,2,\cdots$.

Then we have $|\frac{x(t+1)-\xi(t)}{g(t)}|_{\infty}\leq K+\frac{1}{2}$ for $t\geq 0$.

Indeed,according to the above analysis,we conclude that $|w(t)|_{\infty}\leq |w(t)|_{2} \leq \frac{h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}<\infty$ for $t=1,2,\cdots$.

Noting that $w(t)=\frac{\delta(t)}{g(t)}$, $g(t)=\frac{g_{0}}{r+t}$ and (11),we get

$ \lim_{t\rightarrow \infty}|\delta(t)|_{\infty}=0, $
$ \lim\limits_{t\rightarrow \infty}x(t)=Jx_{0}, $

and

$ \begin{aligned} \lim_{t\rightarrow\infty} &\sup\frac{|\delta(t)|_{2}}{\frac{1}{t}} \leq \\ &\lim_{t\rightarrow\infty}\sup\frac{t}{r+t}\cdot\frac{g_{0}h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}=\\ &\frac{g_{0}h\lambda_{N}\sqrt{N}(r+3)}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})r}. \end{aligned} $

Remark 2. From Theorem 1,we have $x(t)\rightarrow {J}x(0)$ as $t \rightarrow \infty$,and the convergence rate is at least O$(\frac{1}{t})$. Unfortunately,we only give the feasible region of parameters,but do not know how to choose the best ones. Meanwhile,the region of parameters is also conservative. Actually,the smaller parameters $g_{0}$ and $K$ may be available (see Examples 1$\sim$3). We emphasize that Theorem 1,and Theorems 2, 3 below have great significance. Because we can always choose the feasible parameters by the theorems,such that all agents converge to the average consensus value asymptotically.

In [5],the real-time state of encoder is available for the control input,and they choose $g(t)=g_{0}r^{t}$ as scaling function in encoders and decoders. In Theorem 2,we also consider the protocol which uses the real-time information,but we choose $g(t)=\frac{g_{0}}{t+r}$ as scaling function.

Under the protocol given by (3),(5) and (6),%with the $(2K+1)$-level uniform quantizer (7) and the scaling function $g(t)=\frac{g_{0}}{t+r}$, the closed-loop system can be written as

$ \begin{aligned} &x(t+1)=x(t)-h{L}\xi(t),%~t=0,1,\cdots, \\ %&\xi(t)=g(t-1){Q}(\frac{x(t)-\xi(t-1)}{g(t-1)})+\xi(t-1),%~t=1,2,\cdots, &\xi(t+1)=g(t){Q}(\frac{x(t+1)-\xi(t)}{g(t)})+\xi(t), \\ &x(0)=x_{0},~\xi(0)=0,~t=0,1,\cdots. \end{aligned} $ (14)

It is easy to get $\frac{1}{N}\sum_{i=1}^{N}x_{i}(t)=\frac{1}{N}\sum_{i=1}^{N}x_{i}(0)$ for $t=0,1,\cdots$.

Theorem 2. Suppose Assumptions 1 and 2 hold. For any given $h\in (0,~2/\lambda_{N})$,integer $r> \frac{\rho_{h}}{1-\rho_{h}}$,integer $K\geq \lceil M_{1}(h,~r)\rceil$ and

$ g_{0}\geq\max\left\{ \frac{rC_{1}}{K+\frac{1}{2}},~\frac{2(C_{2}+h\lambda_{N}C_{1})[r-(r+1)\rho_{h}]}{h\lambda_{N}}\right\}, $ (15)

where $\rho_{h}$ is given by Lemma 1 and

$ M_{1}(h,~r):= \frac{1}{2r}+\frac{hd^{\ast}(r+1)}{r}+\frac{h\lambda_{N}\sqrt{N}(r+2)}{2[r-(r+1)\rho_{h}]}. $

Then under the protocol given by (3),(5) and (6) with the $(2K+1)$-level uniform quantizer (7) and the scaling function $g(t)=\frac{g_{0}}{t+r}$,the multi-agent network (1) can achieve average consensus asymptotically. That is,the closed-loop system (14) satisfies

$ \lim\limits_{t\rightarrow \infty}x(t)=Jx_{0}. $

Furthermore,the convergence rate is at least O$(\frac{1}{t})$. Actually,

$ \lim_{t\rightarrow\infty} \sup\frac{|x(t)-{J}x(0)|_{2}}{\frac{1}{t}}\leq \frac{g_{0}h\lambda_{N}\sqrt{N}(r+2)}{2[r-(r+1)\rho_{h}]}. $

Proof. We choose $h,~r,~K,~g_{0}$ which satisfy theorem$'$s conditions. By (14),we have

$ x(t+1)-\xi(t)=e(t)+h{L}e(t)-h{L}\delta(t), $
$ \delta(t+1)=\delta(t)-h{L}\delta(t)+h{L}e(t), $
$ e(t+1)=e(t)+h{L}e(t)-h{L}\delta(t)-g(t){Q}(\frac{e(t)+h{L}e(t)-h{L}\delta(t)}{g(t)}), $

for $t=0,1,\cdots$. Specifically,we have $\delta(1)=\delta(0)=x_{0}-{J}x_{0}$,$e(0)=x_{0}$.

The rest proof is similar to Theorem 1,so we omit the details.

Remark 3. From the proofs of Theorems 1 and 2,we conclude that the multi-agent network can achieve average consensus asymptotically by using the following protocol

$ \begin{aligned} &u_{i}(t)=\Sigma_{j\in N_{i}}a_{ij}(\hat{x}_{ji}(t-\tau)-\xi_{i}(t-\tau)),\\ &t=\tau,\tau+1,\cdots,\quad ~i=1,2,\cdots,N,\end{aligned} $

where $\tau$ is a nonnegative integer,$h,~r,~K$ and $g_{0}$ are appropriate parameters. That is,protocol (4) is robust to finite symmetric time-delays. Namely,we can choose $\tau$ as $0$,$1$ or other positive integer. On the other hand,if the protocol changes into

$ \begin{aligned} &u_{i}(t)=\Sigma_{j\in N_{i}} a_{ij}(\hat{x}_{ji}(t-1)-\xi_{i}(t)),\\ & t=1,2,\cdots,\quad ~i=1,2,\cdots,N,\end{aligned} $ (16)

then the multi-agent network will not achieve average consensus asymptotically (see Example 4). Therefore,the distributed average consensus problem of multi-agent digital networks has many challenges.

B. Distributed Protocol with an Exponential Function as Scaling Function

In this section,we choose $g(t)=g_{0}r^{t}$ as scaling function in encoders and decoders.

Theorem 3. Suppose Assumptions 1 and 2 hold. For any given $h\in (0,~1/4\lambda_{N})$,$r\in (a_{h},~1)$,integer $K\geq \lfloor M_{1}(h,~r)+\frac{1}{2}\rfloor$,and

$ g_{0}\geq\max\{ \frac{C_{1}}{K+\frac{1}{2}},~ \frac{2(C_{2}+h\lambda_{N}C_{1})(r-a_{h})}{h\lambda_{N}}\}, $ (17)

where $a_{h},~b_{h}$ are given by Lemma 2 and

$ M_{1}(h,~r):= \frac{1}{2r}+\frac{hd^{\ast}}{r^{2}}+\frac{h^{2}\lambda_{N}^{2}\sqrt{N}}{2r^{2}(r-a_{h})(r-b_{h})}. $

Then under the protocol given by (4)$\sim$(6) with the $(2K+1)$-level uniform quantizer (7) and the scaling function $g(t)=g_{0}r^{t}$, the multi-agent network (1) can achieve average consensus asymptotically. That is,the closed-loop system (10) satisfies

$ \lim\limits_{t\rightarrow \infty}x(t)=Jx_{0}. $

Furthermore,the convergence rate is at least O$(r^{t})$. Actually,

$ \lim_{t\rightarrow\infty} \sup\frac{|x(t)-{J}x(0)|_{2}}{r^{t}} \leq \frac{g_{0}h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})}. $

Proof. The proof is similar to Theorem 1,so we will drop some details. We choose $h,~r,~K$ and $g_{0}$ which satisfy the theorem$'$s conditions.

By (10),we have

$ x(t+1)-\xi(t)=e(t)+h{L}e(t-1)-h{L}\delta(t-1), $
$ \delta(t+1)=\delta(t)+h{L}e(t-1)-h{L}\delta(t-1), $
$ \begin{aligned} e(t+1)=&e(t)+h{L}e(t-1)-h{L}\delta(t-1)-\\ &g(t){Q}(\frac{e(t)+h{L}e(t-1)-h{L}\delta(t-1)}{g(t)}),\end{aligned} $

for $t=1,2,\cdots$. Specifically,we have $\delta(1)=\delta(0)=x_{0}-{J}x_{0}$,$e(0)=x_{0}$, $e(1)=x_{0}-g_{0}{Q}(\frac{x_{0}}{g_{0}})$.

Let $w(t)=\frac{\delta(t)}{g(t)}$ and $z(t)=\frac{e(t)}{g(t)}$. Then we have

$ \begin{aligned} &w(t+1)=\frac{1}{r}w(t)+\frac{h}{r^{2}}{L}z(t-1)-\frac{h}{r^{2}}{L}w(t-1),\\ &z(t+1)=\frac{1}{r}D(t), \end{aligned} $

where $D(t)=z(t)+\frac{h}{r}{L}z(t-1)-\frac{h}{r}{L}w(t-1)-{Q}(z(t)+\frac{h}{r}{L}z(t-1)-\frac{h}{r}{L}w(t-1))$ for $t=1,2,\cdots$. Specifically,we have $w(0)=\frac{\delta(0)}{g_{0}}$,$w(1)=\frac{\delta(0)}{g_{0}r}$, $z(0)=\frac{x_{0}}{g_{0}}$, $z(1)=\frac{1}{r}[\frac{x_{0}}{g_{0}}-{Q}(\frac{x_{0}}{g_{0}})]$ and $D(1)=z(1)-{Q}(z(1))$.

We claim that the quantizer will never be saturated. That is, $|\frac{x(t+1)-\xi(t)}{g(t)}|_{\infty}\leq K+\frac{1}{2}$ for $t\geq 0$.

Indeed,we have $|\frac{x(1)-\xi(0)}{g(0)}|_{\infty}=|\frac{x_{0}}{g_{0}}|_{\infty}\leq\frac{C_{1}}{g_{0}}\leq K+\frac{1}{2}$ and $|z(1)|_{\infty}\leq \frac{1}{2r}$.

Note that

$ |\frac{x(t+1)-\xi(t)}{g(t)}|_{\infty}=|z(t)+\frac{h}{r}{L}z(t-1)-\frac{h}{r}{L}w(t-1)|_{\infty}. $

We only need to prove

$ |z(t)+\frac{h}{r}{L}z(t-1)-\frac{h}{r}{L}w(t-1)|_{\infty}\leq K+\frac{1}{2},~~~t=1,2,\cdots. $

Firstly,it is easy to get $|z(1)+\frac{h}{r}{L}z(0)-\frac{h}{r}{L}w(0)|_{\infty}=|z(1)|_{\infty}\leq \frac{1}{2r}\leq K+\frac{1}{2}$ and $|D(1)|_{\infty}\leq \frac{1}{2}$,$|z(2)|_{\infty}\leq \frac{1}{2r}$.

Secondly,we assume that $$|z(t)+\frac{h}{r}{L}z(t-1)-\frac{h}{r}{L}w(t-1)|_{\infty}\leq K+\frac{1}{2},~~~t=1,2,\cdots,k,$$ then we have $|D(t)|_{\infty}\leq \frac{1}{2}$ and $|z(t+1)|_{\infty}\leq \frac{1}{2r}$ for $t=1,2,\cdots,k$.

Lastly,for $t=k+1$ we will prove

$ |z(k+1)+\frac{h}{r}{L}z(k)-\frac{h}{r}{L}w(k)|_{\infty}\leq K+\frac{1}{2}. $

Since ${L}$ is a real symmetric matrix,we can take an orthogonal matrix $U:= [1/\sqrt{N},\phi_{2},\cdots,\phi_{N}]$ which is defined by $\phi_{i}^{\mathrm{T}}{L}=\lambda_{i}\phi_{i}^{\mathrm{T}}$, $i=2,\cdots,N$. Let $\hat{w}(t):= [\hat{w}_{1}(t),\hat{w}_{2}^{\mathrm{T}}(t)]^{\mathrm{T}}=U^{\mathrm{T}}w(t)$, where $\hat{w}_{1}(t)=(1^{\mathrm{T}}/\sqrt{N})w(t)=0$, $\hat{w}_{2}(t)= \phi ^{\mathrm{T}}w(t)= [\phi_{2},\cdots,\phi_{N}]^{\mathrm{T}}w(t)$.

We have

$ \begin{aligned}\hat{w}_{2}(t+1)=&\frac{1}{r}\hat{w}_{2}(t)+\frac{h}{r^{2}}\phi ^{\mathrm{T}}{L}z(t-1)-\\ &\frac{h}{r^{2}}\mathrm{diag}\{\lambda_{2},\cdots,\lambda_{N}\}\hat{w}_{2}(t-1) \end{aligned} $

for $t=1,2,\cdots$

Let $X=\frac{1}{2r}\mathrm{diag}\{1+\sqrt{1-4h\lambda_{2}},\cdots,1+\sqrt{1-4h\lambda_{N}}\}$ and $Y=\frac{1}{2r}\mathrm{diag}\{1-\sqrt{1-4h\lambda_{2}},\cdots,1-\sqrt{1-4h\lambda_{N}}\}$, then $X+Y=\frac{1}{r}I$, $XY=\frac{h}{r^{2}}\mathrm{diag}\{\lambda_{2},\cdots,\lambda_{N}\}$, $|X|_{2}=\frac{a_{h}}{r}$,$|Y|_{2}=\frac{b_{h}}{r}$ (see Lemma 2).

We have

$ \begin{aligned} &\hat{w}_{2}(t+1)-Y\hat{w}_{2}(t)=\\ &\qquad X(\hat{w}_{2}(t)-Y\hat{w}_{2}(t-1))+\frac{h}{r^{2}}\phi ^{\mathrm{T}}{L}z(t-1)=\\ &\qquad X^{t+1}\hat{w}_{2}(0)+\frac{h}{r^{2}}X^{t-1}\phi ^{\mathrm{T}}{L}z(0)+\\ &\qquad \frac{h}{r^{2}}\sum_{i=0}^{t-2}X^{i}\phi ^{\mathrm{T}}{L}z(t-i-1), \end{aligned} $

and

$ \begin{aligned} \hat{w}_{2}(t+1)=&Y \hat{w}_{2}(t)+f(t)=\\ &[\frac{1}{r}Y^{t}+\sum_{j=0}^{t-1}Y^{j}X^{t-j+1}]\hat{w}_{2}(0)+\\ &\frac{h}{r^{2}}(\sum_{j=0}^{t-1}Y^{j}X^{t-j-1})\phi ^{\mathrm{T}}{L} z(0)+\\ &\frac{h}{r^{2}}\sum_{j=0}^{t-1}\sum_{i=0}^{t-j-2}[Y^{j}X^{i}\phi ^{\mathrm{T}}{L} z(t-j-i-1)], \end{aligned} $

where $f(t):= X^{t+1}\hat{w}_{2}(0)+\frac{h}{r^{2}}\sum_{i=0}^{t-2}X^{i}\phi ^{\mathrm{T}}{L}z(t-i-1)+\frac{h}{r^{2}}X^{t-1}\phi ^{\mathrm{T}}{L}z(0)$.

Noting that $\hat{w}(t)=U^{\mathrm{T}}w(t)$ and $\hat{w}_{1}(t)=0$,$\hat{w}_{2}(t)=\phi ^{\mathrm{T}}w(t)$,we have

$ \begin{aligned} w(t)=&[\frac{1}{r}\phi Y^{t-1}+\phi\sum_{j=0}^{t-2}Y^{j}X^{t-j}]\phi ^{\mathrm{T}}w(0)+\\ &\frac{h}{r^{2}}\phi(\sum_{j=0}^{t-2}Y^{j}X^{t-j-2})\phi ^{\mathrm{T}}{L} z(0)+\\ &\frac{h}{r^{2}}\phi\sum_{j=0}^{t-2}\sum_{i=0}^{t-j-3}[Y^{j}X^{i}\phi ^{\mathrm{T}}{L} z(t-j-i-2)] \end{aligned} $

for $t=2,3,\cdots$.

Now we estimate the three terms on the right-hand side of the above equation,respectively.

Note that $|x|_{\infty}\leq |x|_{2}\leq \sqrt{N}|x|_{\infty}$ for $x\in R^{N}$,$|\phi|_{2}=1$,and we have assumed that $|z(t)|_{\infty}\leq \frac{1}{2r}$ for $t=1,2,\cdots,k+1$,then we have

$ \begin{aligned} &|[\frac{1}{r}\phi Y^{t-1}+\phi\sum_{j=0}^{t-2}Y^{j}X^{t-j}]\phi^{\mathrm{T}}w(0)|_{2}\leq \\ &\qquad [\frac{1}{r} (\frac{b_{h}}{r})^{t-1} +\sum_{j=0}^{t-2}(\frac{b_{h}}{a_{h}})^{j}(\frac{a_{h}}{r})^{t}]\sqrt{N}|w(0)|_{\infty}\leq \\ &\qquad \frac{\sqrt{N}C_{2}}{g_{0}r} (\frac{b_{h}}{r})^{t-1} +\frac{\sqrt{N}C_{2}}{g_{0}(a_{h}-b_{h})r}(\frac{a_{h}}{r})^{t-1}, \end{aligned} $
$ \begin{aligned} &|\frac{h}{r^{2}}\phi(\sum_{j=0}^{t-2}Y^{j}X^{t-j-2})\phi^{\mathrm{T}}Lz(0)|_{2}\leq \\ &\qquad \frac{h}{r^{2}}[\sum_{j=0}^{t-2}(\frac{b_{h}}{a_{h}})^{j}(\frac{a_{h}}{r})^{t-2}]\lambda_{N}\sqrt{N}|z(0)|_{\infty}\leq \\ &\qquad \frac{h\lambda_{N}\sqrt{N}C_{1}}{g_{0}r(a_{h}-b_{h})}(\frac{a_{h}}{r})^{t-1}, \end{aligned} $

and

$ \begin{aligned} &|\frac{h}{r^{2}}\phi\sum_{j=0}^{t-2}\sum_{i=0}^{t-j-3}[Y^{j}X^{i}\phi ^{\mathrm{T}}{L} z(t-j-i-2)]|_{2}\leq \\ &~~~\frac{h\lambda_{N}\sqrt{N}}{2r^{3}}\sum_{j=0}^{t-2}\sum_{i=0}^{t-j-3}[(\frac{b_{h}}{r})^{j}(\frac{a_{h}}{r})^{i}]\leq\\ &~~~\frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})}[1-(\frac{b_{h}}{r})^{t-1}]-\\ &~~~\frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(a_{h}-b_{h})}(\frac{a_{h}}{r})^{t-1},~~~~t=3,4,\cdots,k. \end{aligned} $

So we have

$ |w(1)|_{2}=|\frac{\delta(0)}{g_{0}r}|_{2}\leq\frac{\sqrt{N}C_{2}}{g_{0}r}, $
$ |w(2)|_{2}=|\frac{1}{r}w(1)|_{2}\leq\frac{\sqrt{N}C_{2}}{g_{0}r^{2}}, $
$ \begin{aligned} |w(t)|_{2} \leq& \frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})}+\\[2mm] & [\frac{C_{2}}{g_{0}}-\frac{h\lambda_{N}}{2(r-a_{h})(r-b_{h})}]\frac{\sqrt{N}}{r}(\frac{b_{h}}{r})^{t-1}+\\[2mm] &[\frac{C_{2}}{g_{0}}+\frac{h\lambda_{N}C_{1}}{g_{0}} -\frac{h\lambda_{N}}{2(r-a_{h})}] \frac{\sqrt{N}}{r(a_{h}-b_{h})}(\frac{a_{h}}{r})^{t-1}\leq\\[2mm] & \frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})},~~~~t=3,4,\cdots,k, \end{aligned} $

where $\frac{C_{2}}{g_{0}}\leq \frac{h\lambda_{N}}{2(r-a_{h})(r-b_{h})}$, $\frac{C_{2}+h\lambda_{N}C_{1}}{g_{0}}\leq \frac{h\lambda_{N}}{2(r-a_{h})}$ and $\frac{\sqrt{N}C_{2}}{g_{0}r^{2}}< \frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})}$ by (17).

Thus,

$ |w(t)|_{2}\leq \frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})},~~~~t=1,2,\cdots,k, $

and

$ \begin{aligned} &|z(k+1)+\frac{h}{r}{L}z(k)-\frac{h}{r}{L}w(k)|_{\infty}\leq\\[2mm] &\qquad \frac{1}{2r}+\frac{hd^{\ast}}{r^{2}}+\frac{h^{2}\lambda_{N}^{2}\sqrt{N}}{2r^{2}(r-a_{h})(r-b_{h})}\leq\\[2mm] &\qquad \lfloor M_{1}(h,~r)+\frac{1}{2}\rfloor+\frac{1}{2}\leq K+\frac{1}{2},~~~~k=1,2,\cdots. \end{aligned} $

By induction,we conclude that $|z(t)+\frac{h}{r}{L}z(t-1)-\frac{h}{r}{L}w(t-1)|_{\infty}\leq K+\frac{1}{2}$ for $t=1,2,\cdots.$

Then we have $|\frac{x(t+1)-\xi(t)}{g(t)}|_{\infty}\leq K+\frac{1}{2}$ for $t\geq 0$.

Indeed,according to the above analysis,we conclude that $|w(t)|_{\infty}\leq |w(t)|_{2}\leq \frac{h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})}<\infty$ for $t=1,2,\cdots$. Noting that $w(t)=\frac{\delta(t)}{g(t)}$ and $g(t)=g_{0}r^{t}$ with $r\in (a_{h},~1)$,we get

$ \lim_{t\rightarrow \infty}|\delta(t)|_{\infty}=0, $
$ \lim_{t\rightarrow\infty} \sup\frac{|\delta(t)|_{2}}{r^{t}} \leq \frac{g_{0}h\lambda_{N}\sqrt{N}}{2r(r-a_{h})(r-b_{h})}. $

By (11),we have $\lim\limits_{t\rightarrow \infty}x(t)=Jx_{0}$.

Remark 4. From Theorem 3,we have $x(t)\rightarrow {J}x(0)$ as $t \rightarrow \infty$,and the convergence rate is at least O$(r^{t})$ with $r\in (a_{h},~1)$.

Remark 5. Comparing these theorems,we have the followings conclusions.

1) We can always choose some feasible parameters $h,~r,~K$ and $g_{0}$ by these theorems,such that the multi-agent network can achieve average consensus asymptotically.

2) The scaling functions can influence the convergence rate.

3) For our mentioned multi-agent digital networks,the average consensus protocol (4) is robust to finite symmetric time-delays,but is sensitive to asymmetric time-delays. The asymmetric time-delays will destroy the average consensus. %The time-delays can influence the consensus value of digital networks.

Ⅳ. NUMERICAL EXAMPLES

We consider a network with 10 nodes. The interconnection topology is modeled as a simple undirected circuit graph and shown in Fig. 1. $A$ is the adjacency matrix,

Download:
Fig. 1 The interconnection topology.
$ A=\frac{1}{3}\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 0 & 0 & \cdots & 1 & 1 \\ \end{bmatrix}_{10\times 10}. $

Then we have $\lambda_{2}= 0.3820$,$\lambda_{N}= 4$. The initial states satisfy $|x(0)|_{\infty}\leq 5$ and $|\delta(0)|_{\infty}\leq 8$. In the following examples,the initial state is $x_{i}(0)=-6+i$ for $i=1,\cdots,10$. Then $\frac{1}{10}\sum_{i=1}^{10}x_{i}(0)=-0.5$.

Based on the above conditions,we choose a set of control parameters to illustrate the above theorems.

Example 1. For Theorem 1,we choose $h=0.02$,then we have $a_{h}=0.9923$,$b_{h}=0.0877$. And we choose $r=185$,$K=5$, $g_{0}=170$. The evolution of the states is shown in Fig. 2 (a). We only change $g_{0}=3$,and get the evolution of the states which is shown in Fig. 2 (b). It can be seen that the average consensus is all achieved asymptotically.

Download:
Fig. 2 The trajectories of the states in Example 1.

Example 2. For Theorem 2,we choose $h=0.40$,then we have $\rho_{h}=0.8472$. And we choose $r=7$,$K=104$,$g_{0}=4.5$. The evolution of the states is shown in Fig. 3 (a). We only change $K=5$,and get the evolution of the states,which is shown in Fig. 3 (b). It can be seen that the average consensus is all achieved asymptotically.

Download:
Fig. 3 The trajectories of the states in Example 2.

Example 3. For Theorem 3,we choose $h=0.02$,then we have $a_{h}=0.9923$,$b_{h}=0.0877$. And let $r=0.9950$,$K=5$ and $g_{0}=1$. The evolution of the states is shown in Fig. 4 (a). We only change $K=2$,and get the evolution of the states which is shown in Fig. 4 (b). It can be seen that the average consensus is all achieved asymptotically.

Download:
Fig. 4 The trajectories of the states in Example 3.

Example 4. We use protocol (16) to instead protocol (4). We choose $h=0.05$ and $K=5$. The evolution of the states is shown in Fig. 5 (a) (with $g(t)=\frac{g_{0}}{t+r}$ as scaling function, where $r=7$,$g_{0}=3$) and Fig. 5 (b) (with $g(t)=g_{0}r^{t}$ as scaling function,where $r=0.99$,$g_{0}=1$). It can be seen that the multi-agent network can achieve consensus asymptotically (the consensus value is $-0.4348$),but can not achieve average consensus (because $-0.500\neq-0.4348$).

Download:
Fig. 5 The trajectories of the states in Example 4.
Ⅴ. CONCLUSION AND DISCUSSION

In this paper,the average consensus control problem has been considered for the undirected networks with finite bandwidth and time-delays. The average consensus problem can be efficiently solved by our protocol. Furthermore,we show that the average consensus protocol is robust to finite symmetric time-delays,but is sensitive to asymmetric time-delays. The asymmetric time-delays will destroy the average consensus of the networks. %Furthermore,we have shown that time-delays can influence the consensus value of digital network. Meanwhile,we find that the theoretical results are still quite conservative from simulations. For future research,how to relax the selection of parameters and how to choose the best parameters will be considered.

APPENDIX

If $g_{0}\geq\frac{2r(C_{2}+h\lambda_{N}C_{1})(1-\frac{r}{r-1}a_{h})}{h\lambda_{N}}$, then $\frac{C_{2}+h\lambda_{N}C_{1}}{g_{_{_{0}}}}< \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})}\cdot \frac{(\frac{r}{r-1})^{t-2}}{r+t-3}$ and $\frac{C_{2}}{g_{_{_{0}}}} < \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})}\cdot \frac{(\frac{r}{r-1})^{t-1}}{r+t-3}$ for $t\geq 3$.

Proof. Noting that integer $r> \frac{1}{1-a_{h}}$,we have $r\geq 3$,$1-\frac{r}{r-1}a_{h}>0$,$1-\frac{r}{r-1}b_{h}>0$.

It is easy to prove $(\frac{r}{r-1})^{r}> {\rm e}$ for $r\geq 3$. Then we have $3-r+\frac{1}{\ln\frac{r}{r-1}}<3$ for $r\geq 3$. Let $f(t):= \frac{(\frac{r}{r-1})^{t-2}}{r+t-3}$,we have $f^{'}(t)=\frac{(\frac{r}{r-1})^{t-2}[(r+t-3)(\ln\frac{r}{r-1})-1]}{(r+t-3)^{2}}.$ It is easy to know $f^{'}(t)\geq 0$ for $t\geq 3$. Furthermore,we have $f(t)\geq f(3)=\frac{1}{r-1}$ for $t\geq 3$

Note that $g_{0}\geq\frac{2r(C_{2}+h\lambda_{N}C_{1})(1-\frac{r}{r-1}a_{h})}{h\lambda_{N}}.$ Therefore,

$ \begin{aligned} \frac{C_{2}+h\lambda_{N}C_{1}}{g_{0}} <& \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})} \frac{1}{r-1}\leq\\ & \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})}\frac{(\frac{r}{r-1})^{t-2}}{r+t-3}, \end{aligned} $

and

$ \begin{aligned} \frac{C_{2}}{g_{0}} & < \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})}\frac{1}{r-1}\leq\\ & \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})} \frac{(\frac{r}{r-1})^{t-2}}{r+t-3}\leq\\ & \frac{h\lambda_{N}}{2(1-\frac{r}{r-1}a_{h})(1-\frac{r}{r-1}b_{h})}\frac{(\frac{r}{r-1})^{t-1}}{r+t-3}. \end{aligned} $
References
[1] Kashyap A, Başar T, Srikant R. Quantized consensus. Automatica, 2007, 43(7):1192-1203
[2] Carli R, Fagnani F, Frasca P, Zampieri S. Gossip consensus algorithms via quantized communication. Automatica, 2010, 46(1):70-80
[3] Cai K, Ishii H. Quantized consensus and averaging on gossip digraphs. IEEE Transactions on Automatic Control, 2011, 56(9):2087-2100
[4] Fang J, Li H B. Distributed consensus with quantized data via sequence averaging. IEEE Transactions on Signal Processing, 2010, 58(2):944-948
[5] Carli R, Fagnani F, Frasca P, Zampieri S. Efficient quantized techniques for consensus algorithms. In:NeCST workshop. Nancy, France, 2007
[6] Frasca P, Carli R, Fagnani F, Zampieri S. Average consensus on networks with quantized communication. International Journal of Robust and Nonlinear Control, 2009, 19(16):1787-1816
[7] Carli R, Bullo F, Zampieri S. Quantized average consensus via dynamic coding/decoding schemes. International Journal of Robust and Nonlinear Control, 2010, 20(2):156-175
[8] Li T, Fu M Y, Xie L H, Zhang J F. Distributed consensus with limited communication data rate. IEEE Transactions on Automatic Control, 2011, 56(2):279-292
[9] Li T, Xie L H. Distributed consensus over digital networks with limited bandwidth and time-varying topologies. Automatica, 2011, 47(9):2006-2015
[10] Liu S, Li T, Xie L H. Distributed consensus for multiagent systems with communication delays and limited data rate. SIAM Journal on Control and Optimization, 2011, 49(6):2239-2262
[11] Cheng Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4):312-321(in Chinese)
[12] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533
[13] Carli R, Fagnani F, Speranzon A, Zampieri S. Communication constraints in the average consensus problem. Automatica, 2008, 44(3):671-684
[14] Min Hai-Bo, Liu Yuan,Wang Shi-Cheng, Sun Fu-Chun. An Overview on Coordination Control Problem of Multi-agent System. Acta Automatica Sinica, 2012, 38(10):1557-1570(in Chinese)
[15] Cao Xi-Bin, Guo Hai-Bo, Zhang Shi-Jie. Information topologyindependent consensus criteria for second-order systems under directed graph. Acta Automatica Sinica, 2013, 39(7):995-1002(in Chinese)
[16] Thanou D, Kokiopoulou E, Pu Y, Frossard P. Distributed average consensus with quantization refinement. IEEE Transactions on Signal Processing, 2013, 61(1):194-205
[17] Fiedler M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 1973, 23(2):298-305