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    Fig. S1, where each node receives the acoustic signals in the envi-
ronment.  Nodes  communicate  with  each  other  by  acoustic  signals,
cables, or drifting buoys on the surface [1].

 

 
Fig. S1. Detection environment.
 
Fig. S2 displays the sound collected by an actual hydrophone when

a ship passes by.
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Fig. S2. Actual sound and intensity feature.
 
Fig. S3 is the state transformation and model selection diagram.
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Fig. S3. State transformation and model selection.
 
Fig. S4 is the flow chart of the whole tracking method.
Fig. S5 displays  the  feature  of  the  signal  intensity  received  by  a

node.
1) Intensity models of the received acoustic signal

PE

Mechanical  noise  and  hydrodynamic  noise  are  dominant  types  of
sound exposed by underwater targets. Generated intensity  is pri-
marily  determined  by  the  steady  part  of  mechanical  noise  which
comes from the engine operation. The frequency of the noise usually

PE = a+b|v|

falls within 100 Hz to 1 kHz [2]. In a certain range, the sound inten-
sity of different kinds of underwater targets has an approximately lin-
ear relationship with the speed, as Section 2.5.4 in [3] shows. There-
fore,  the relationship between the signal intensity and the speed can
be expressed as .

PA
PS

PS
c = 1

The  lost  signal  intensity  from  the  target  to  the  sensor  is  the  path
loss,  which  includes  the  absorption  loss  and  the  spreading  loss

. According to the findings in [4], the spreading loss is caused by
the expansion of the sound and is dependent on the distance between
the target and the receiver. Different models are appropriate for dif-
ferent  transmission  environments.  In  the  case  of  bounded  spreading
in shallow ocean areas,  is equivalent as cylindrical where the dif-
fusion coefficient , and
 

PS (R) = c×10log
(
R×10−3

)
. (1)

PAThe absorption loss  [dB] is an energy loss in form of heat and
varies linearly with a range as [4]
 

PA(R, f ) = 10log(α( f ))×R (2)
R

α( f )

α( f )

where  [km]  is  the  distance  between  the  node  and  the  target,  and
 is  the  absorption  coefficient  related  to  the  signal  frequency.

Within  the  frequency  range  of  100  Hz  to  3  kHz  using  Thorp’s  for-
mula [4],  [dB/m] with f in kHz is empirically denoted as
 

α( f )=
(

0.11 f 2

f 2 +1
+

44 f 2

f 2 +4100
+2.75×10−4 f 2+3×10−4

)
×10−3. (3)

In  this  way,  we  obtain  the  following  formula  for  the  intensity  of
sound received by a passive node from the underwater target as:
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Fig. S4. Schematic of the FAMM method.
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Fig. S5. Feature of the signal intensity.
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Ptotal = PE−PS −PA+Qc = a+b|v|− logR−10log(α( f ))×R+Qc (4)
Qcwhere  is the random noise of background in the target-free case.

2) Selection of parameters

η1 η2 η3

∆P
∆P

f (∆P | H0) ∼ N(Pmax,q2
c) H0

f (∆P | H0) ∼
N(∆P̄t,q2

c) P̄t

The switching of models can be treated as a problem of hypothesis
testing [5]. Thus, parameters ,  and  in the coditions determine
the thesholds for model switching, and can be calculated and choosen
based on the probability of false judgment. For example, Condition 1
is  used  to  determine  whether  the  target  is  in  a  CV  model  or  a  CT
model. As Fig. S6 shows, when we know the probability distribution
function (PDF) of  in different states, the probability of false judg-
ment  under  different  parameters  are  obtained.  The  PDF  of  fol-
lows  the  Gaussian  distribution  approximately.  In  the  CV  state,

, where  denotes the hypothesis when the
judgment  is  correct.  Similarly  in  the  CT  model, 

,  where  is  the  average  variation  related  to  the  motion

η1 = 1.2 η2 = 1.8 η3 = 2

and  acoustic  characteristics  of  a  target,  that  is,  related  to  the  target
type.  The  optimal  thesholds  and  parameters  are  calculated  by  mini-
mizing  the  comprehensive  false  judgment  probability.  In  this  letter,
we set ,  and  for typical scenarios. In practice,
these parameters  can be adjusted based on the target  of  interest  and
the accuracy of model judgment at each node through experiments.
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Fig. S6. State transformation and model selection.
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