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Proof  of  Theorem 1: According to  iteration  (10),  it  follows that,
for  any ,  one  has  that 
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According to the definition of subgradient, it also holds that
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Thus, (11) holds. ■
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Proof of Theorem 2: 1) Using (10), we can obviously establish the

following  equation:  Subtracting  it
with (9), one can derive
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which completes the proof for 1).
2) By using (11), it follows that:
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From above inequality, one can obtain the following inequality:
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We proceed to plus above inequality from  and multi-
ply , as a consequence, we have that
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K(λ̂i(k))In  the  sequel,  we  consider  the  estimate  for ,  for  which,
according to the definition of subgradient, we have that
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Proof  of  Theorem  3: According  to  the  multi-agent  iteration  (3)
and the  updating mechanism (7),  we know that  the  real  exchanging
information over  the  network is  the  noised state  at  every time
instant.

[0,n∗] n∗ > ῑ∗
We  assume  that  the  observing  time  window  of  eavesdroppers  is

 with .  The  information  obtained  by  it  can  be  listed  by
the following equations:
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By Assumption 3, we assume that for agent i its neighbor  is hon-
est.  Thus,  in  above  polynomial  equation,  the  unknown  information
is , , and 

. There are  unknown variables, thus we cannot infer
any  parameter  from  above  equation,  according  to  the  solving
approach of polynomials. ■
Conclusion: In  this  letter,  a  subgradient  algorithm  is  proposed

based  on  multi-agent  consensus,  by  which  an  economic  dispatch
problem in the smart grids is considered for application to realize the
minimal  generating  cost.  The  effect  of  hyper-parameters  especially
the  step  size  on  the  convergence  of  the  objective  function  are
explored,  deepening  our  understanding  of  the  convergence  proper-
ties of the gradient method.

  


