

Supplementary Material of “RGCNU: Recurrent Graph
Convolutional Network With Uncertainty Estimation

for Remaining Useful LifePrediction”

Qiwu Zhu, Qingyu Xiong, Zhengyi Yang, and Yang Yu

GCN
Two-layer GCN: The graph information of nodes with two-layer

 can be formulated as

f (xt,A) = ReLU
(
Â
(
ÂxtW0

)
W1
)

(10)

xt ∈ RN×1

t ∈ {1, . . . ,F} X = {x1, x2, . . . , xF } Â = D̃−
1
2 ÃD̃−

1
2 ∈ RN×N

Ã = A+ I ∈ RN×N A
D̃ii =

∑
j Ãi j ∈ RN×N

Ã W0 ∈ RF×J W1 ∈ RJ×K

F
J K

where is the features of the equipment at time slice
, ; is the re-

normalization trick, means the adjacency matrix
plus a self-loop, and is the corresponding degree
matrix of . Also, and represent the parame-
ter matrix from the input feature dimension to the output feature
dimension and , respectively.
TDL computation process: The computation process can be sum-

marized as follows:

It = σ (Wzi ∗Zt +Whi ∗Ht−1 +Wci ⊙Ct−1)

Ft = σ
(
Wz f ∗Zt +Wh f ∗Ht−1 +Wc f ⊙Ct−1

)
Ot = σ (Wzo ∗Zt +Who ∗Ht−1 +Wco ⊙Ct)
Ct = Ft ⊙Ct−1 + It ⊙ tanh(Wzc ∗Zt +Whc ∗Ht−1)
Ht = Ot ⊙ tanh(Ct) (11)

Zt ∈ RN×K t ∈ {1, . . . ,F} It Ft
Ht−1 Ot Ct

ht ⊙ ∗
Wαβ(α ∈ z, h, c, β ∈ i, f , o, c)
σ

where denotes the output of SCL, , , ,
, and denote the input gate, the forget gate, the previous

hidden state, the output gate and the final memory cell respectively,
 is the final hidden state, is the Hadamard product, is the con-

volution operation, denotes the learn-
able parameter, and is the activation function.

ŷi σ̂i

Loss function: Different from the traditional loss function focus-
ing on the regression value, we assume that the predicted RUL shows
a Gaussian distribution with mean and variance after consider-
ing the data uncertainty, then the loss function is a likelihood func-
tion, given by

pθ(y | x) =
M∏

i=1

1

σi
√

2π
e
− (ŷi−yi)2

2σ̂2
i . (12)

The negative log likelihood is used as follows:

L(θ) = − log pθ(y | x) =
M∑

i=1

(ŷi − yi)2

2σ̂2
i

+
1
2

log
(
σ2

i

)
. (13)

σ̂2
i

si := log σ̂2
i

exp(−si)

Considering the numerical stability for regressing the variance
and avoiding dividing the loss function by zero, we train the network
to predict the log variance, . The exponential mapping
also allows the network to regress unconstrained scalar values, which
means is resolved to the positive domain giving valid val-

ues for variance.

L(θ) =
1
M

M∑
i=1

1
2

exp(−si)∥yi − ŷi∥2 +
1
2

si. (14)

si
exp(−si)∥yi − ŷi∥2

si ∥yi − ŷi∥2
si

si

From (14), the RUL prediction model estimates large to temper
the error term, , instead of overfitting on these
noisy samples. The prediction model is discouraged from predicting
large for all samples, which may lead to underfitting of
and, in turn, larger term punishes the model. This makes the model
adapt the , and allows the model to learn to attenuate the effect
from noisy samples.

si

si

Furthermore, considering that the unconstrained may explode
and result in large degradation uncertainties, an L2 regularization
term of is added to the loss function. The final loss function can be
obtained as (7).
Experimental details:
Datasets: C-MAPSS contains four datasets, each of which includes

training and test data. Table 3 describes the size of the data sets.
After obtaining the model through cross-validation on training data,
the trained model is then evaluated on test data.

Table 3. Detail of the Experimental Data

FD001 FD002 FD003 FD004

Training units 100 260 100 249

Test units 100 259 100 248

1E−3 λ

L

Implementation details: We train RGCNU by Adam Optimizer
with learning rate , is 0.15, 0.2, 0.25 and 0.13, respectively
for the four data sets. The windows size is 30, 20, 30 and 18, respec-
tively. is 10. The hidden units in TDL are 64. The other hyper-
parameters are shown in Table 4.

Table 4. Default Hyper-Parameters of RGCNU

Parameter Epoch Dropout Weight decay α J/C Φ1 FC1/FC2

Value 150 0.8 5E−4 3 64 64 14/1

Evaluation metrics: The main difference between the two metrics
is that the score function penalizes later predictions more heavily
(i.e., the predicted RUL is larger than the actual RUL), whereas
RMSE places equal weight on early and later predictions.

RMSE =

√√
1
n

n∑
i=1

(∆i)2

Score =
n∑

i=1

si, si =

e− ∆i
13 −1, for ∆i < 0

e
∆i
10 −1, for ∆i ≥ 0

(15)

n ∆i = ŷi− yi ŷi
yi

where is the number of test samples, , is the pre-
dicted value, and is the true value.

