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GCN
Two-layer GCN: The graph information of  nodes with two-layer

 can be formulated as
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where  is  the  features  of  the  equipment  at  time  slice
, ;  is  the  re-

normalization trick,  means the adjacency matrix 
plus a self-loop, and  is the corresponding degree
matrix of . Also,  and  represent the parame-
ter  matrix  from the  input  feature  dimension  to  the  output  feature
dimension  and , respectively.
TDL computation process: The computation process can be sum-

marized as follows:
 

It = σ (Wzi ∗Zt +Whi ∗Ht−1 +Wci ⊙Ct−1)

Ft = σ
(
Wz f ∗Zt +Wh f ∗Ht−1 +Wc f ⊙Ct−1

)
Ot = σ (Wzo ∗Zt +Who ∗Ht−1 +Wco ⊙Ct)
Ct = Ft ⊙Ct−1 + It ⊙ tanh(Wzc ∗Zt +Whc ∗Ht−1)
Ht = Ot ⊙ tanh(Ct) (11)

Zt ∈ RN×K t ∈ {1, . . . ,F} It Ft
Ht−1 Ot Ct

ht ⊙ ∗
Wαβ(α ∈ z, h, c, β ∈ i, f , o, c)
σ

where  denotes  the  output  of  SCL, , , ,
,  and  denote  the  input  gate,  the  forget  gate,  the  previous

hidden state, the output gate and the final memory cell respectively,
 is the final hidden state,  is the Hadamard product,  is the con-

volution operation,  denotes the learn-
able parameter, and  is the activation function.

ŷi σ̂i

Loss  function: Different  from the  traditional  loss  function  focus-
ing on the regression value, we assume that the predicted RUL shows
a Gaussian distribution with mean  and variance  after consider-
ing the  data  uncertainty,  then the  loss  function is  a  likelihood func-
tion, given by
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The negative log likelihood is used as follows:
 

L(θ) = − log pθ(y | x) =
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i=1
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i

si := log σ̂2
i

exp(−si)

Considering the numerical  stability for regressing the variance 
and avoiding dividing the loss function by zero, we train the network
to  predict  the  log  variance, .  The  exponential  mapping
also allows the network to regress unconstrained scalar values, which
means  is  resolved to the positive domain giving valid val-

ues for variance.
 

L(θ) =
1
M

M∑
i=1

1
2

exp(−si)∥yi − ŷi∥2 +
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From (14), the RUL prediction model estimates large  to temper
the  error  term, ,  instead  of  overfitting  on  these
noisy samples. The prediction model is discouraged from predicting
large  for  all  samples,  which may lead to underfitting of 
and, in turn, larger  term punishes the model. This makes the model
adapt  the ,  and  allows  the  model  to  learn  to  attenuate  the  effect
from noisy samples.

si

si

Furthermore,  considering  that  the  unconstrained  may  explode
and  result  in  large  degradation  uncertainties,  an  L2  regularization
term of  is added to the loss function. The final loss function can be
obtained as (7).
Experimental details:
Datasets: C-MAPSS contains four datasets, each of which includes

training  and  test  data. Table 3 describes  the  size  of  the  data  sets.
After  obtaining the model  through cross-validation on training data,
the trained model is then evaluated on test data.
 

Table 3.  Detail of the Experimental Data

FD001 FD002 FD003 FD004

Training units 100 260 100 249

Test units 100 259 100 248
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Implementation  details:  We  train  RGCNU  by  Adam  Optimizer
with  learning rate ,  is  0.15,  0.2,  0.25 and 0.13,  respectively
for the four data sets. The windows size is 30, 20, 30 and 18, respec-
tively.  is  10.  The  hidden  units  in  TDL  are  64.  The  other  hyper-
parameters are shown in Table 4.
 

Table 4.  Default Hyper-Parameters of RGCNU

Parameter Epoch Dropout Weight decay α J/C Φ1 FC1/FC2

Value 150 0.8 5E−4 3 64 64 14/1
 
 

Evaluation  metrics:  The  main  difference  between  the  two  metrics
is  that  the  score  function  penalizes  later  predictions  more  heavily
(i.e.,  the  predicted  RUL  is  larger  than  the  actual  RUL),  whereas
RMSE places equal weight on early and later predictions.
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√√
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e
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n ∆i = ŷi− yi ŷi
yi

where  is  the  number  of  test  samples, ,  is  the  pre-
dicted value, and  is the true value.

  


