A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 5
May  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Zhang, Q. Kang, Q. Deng, L. Y. Xu, and  Q. D. Wu,  “A line complex-based evolutionary algorithm for many-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1150–1167, May 2023. doi: 10.1109/JAS.2023.123495
Citation: L. Zhang, Q. Kang, Q. Deng, L. Y. Xu, and  Q. D. Wu,  “A line complex-based evolutionary algorithm for many-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1150–1167, May 2023. doi: 10.1109/JAS.2023.123495

A Line Complex-Based Evolutionary Algorithm for Many-Objective Optimization

doi: 10.1109/JAS.2023.123495
Funds:  This work was supported in part by the National Natural Science Foundation of China (51775385), the Natural Science Foundation of Shanghai (23ZR1466000), the Shanghai Industrial Collaborative Science and Technology Innovation Project (2021-cyxt2-kj10), the Innovation Program of Shanghai Municipal Education Commission (202101070007E00098), the Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology of MOE (1221046), and the Program to Cultivate Middle-Aged and Young Cadre Teacher of Jiangsu Province
More Information
  • In solving many-objective optimization problems (MaOPs), existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure. Most candidate solutions become nondominated during the evolutionary process, thus leading to the failure of producing offspring toward Pareto-optimal front with diversity. Can we find a more effective way to select nondominated solutions and resolve this issue? To answer this critical question, this work proposes to evolve solutions through line complex rather than solution points in Euclidean space. First, Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones. Besides position vectors of the solution points, momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure. Then, a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distance-based estimator. Based on them, a novel many-objective evolutionary algorithm (MaOEA) is proposed by integrating a line complex-based environmental selection strategy into the NSGA-III framework. The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives. Experimental results demonstrate its superior competitiveness in solving MaOPs.

     

  • loading
  • [1]
    F. Q. Zhao, R. Ma, and L. Wang, “A self-learning discrete Jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 12675–12686, Dec. 2022. doi: 10.1109/TCYB.2021.3086181
    [2]
    Y. C. Hua, Q. Q. Liu, K. R. Hao, and Y. C. Jin, “A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 303–318, Feb. 2021. doi: 10.1109/JAS.2021.1003817
    [3]
    R. J. Lygoe, M. Cary, and P. J. Fleming, “A real-world application of a many-objective optimisation complexity reduction process,” in Proc. 7th Int. Conf. Evolutionary Multi-Criterion Optimization, Sheffield, UK, 2013, pp. 641–655.
    [4]
    O. Chikumbo, E. Goodman, and K. Deb, “Approximating a multi-dimensional Pareto front for a land use management problem: A modified MOEA with an epigenetic silencing metaphor,” in Proc. IEEE Congr. Evolutionary Computation, Brisbane, Australia, 2012, pp. 1–9.
    [5]
    Z. M. Lv, L. Q Wang, Z. Y Han, J. Zhao, and W. Wang, “Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 838–849, May 2019. doi: 10.1109/JAS.2019.1911450
    [6]
    K. Z. Gao, Z. G. Cao, L. Zhang, Z. H. Chen, Y. Y. Han, and Q. K. Pan, “A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 904–916, Jul. 2019. doi: 10.1109/JAS.2019.1911540
    [7]
    Y. N. Sun, G. G. Yen, and Z. Yi, “IGD indicator-based evolutionary algorithm for many-objective optimization problems,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 173–187, Apr. 2019. doi: 10.1109/TEVC.2018.2791283
    [8]
    F. Ming, W. Y. Gong, and L. Wang, “A two-stage evolutionary algorithm with balanced convergence and diversity for many-objective optimization,” IEEE Trans. Syst. , Man, Cybern. , Syst., vol. 52, no. 10, pp. 6222–6234, Oct. 2022.
    [9]
    R. C. Purshouse and J. Fleming, “On the evolutionary optimization of many conflicting objectives,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 770–784, Dec. 2007. doi: 10.1109/TEVC.2007.910138
    [10]
    S. B. Liu, Q. Z. Lin, K. C. Tan, M. G. Gong, and C. A. C. Coello, “A fuzzy decomposition-based multi/many-objective evolutionary algorithm,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3495–3509, May 2022.
    [11]
    Y. Tian, H. W. Chen, H. Ma, X. Y. Zhang, K. C. Tan, and Y. C. Jin, “Integrating conjugate gradients into evolutionary algorithms for large-scale continuous multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1801–1817, Oct. 2022. doi: 10.1109/JAS.2022.105875
    [12]
    Y. Tian, Y. D. Feng, X. Y. Zhang, and C. Y. Sun, “A fast clustering based evolutionary algorithm for super-large-scale sparse multi-objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1048–1063, Apr. 2023.
    [13]
    Y. Xiang, Y. R. Zhou, X. W. Yang, and H. Huang, “A many-objective evolutionary algorithm with Pareto-adaptive reference points,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 99–113, Feb. 2020. doi: 10.1109/TEVC.2019.2909636
    [14]
    S. W. Zhu, L. H. Xu, E. D. Goodman, and Z. C. Lu, “A new many-objective evolutionary algorithm based on generalized Pareto dominance,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 7776–7790, Aug. 2022. doi: 10.1109/TCYB.2021.3051078
    [15]
    Z. N. He, G. G. Yen, and J. Zhang, “Fuzzy-based Pareto optimality for many-objective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 269–285, Apr. 2014. doi: 10.1109/TEVC.2013.2258025
    [16]
    Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-based evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 1, pp. 16–37, Feb. 2016. doi: 10.1109/TEVC.2015.2420112
    [17]
    D. K. Saxena, S. Mittal, S. Kapoor, and K. Deb, “A localized high-fidelity-dominance based many-objective evolutionary algorithm,” IEEE Trans. Evol. Comput., 2022, DOI: 10.1109/TEVC.2022.3188064.
    [18]
    Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712–731, Dec. 2007. doi: 10.1109/TEVC.2007.892759
    [19]
    K. Li, K. Deb, Q. F. Zhang, and S. Kwong, “An evolutionary many-objective optimization algorithm based on dominance and decomposition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716, Oct. 2015. doi: 10.1109/TEVC.2014.2373386
    [20]
    S. B. Liu, Q. Z. Lin, K. C. Tan, M. G. Gong, and C. A. C. Coello, “A fuzzy decomposition-based multi/many-objective evolutionary algorithm,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3495–3509, May 2022. doi: 10.1109/TCYB.2020.3008697
    [21]
    K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 577–601, Aug. 2014. doi: 10.1109/TEVC.2013.2281535
    [22]
    R. Cheng, Y. C. Jin, M. Olhofer, and B. Sendhoff, “A reference vector guided evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 20, no. 5, pp. 773–791, Oct. 2016. doi: 10.1109/TEVC.2016.2519378
    [23]
    A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of multiobjective evolutionary algorithms based on decomposition,” IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 440–462, Jun. 2017.
    [24]
    J. G. Falcón-Cardona and C. A. C. Coello, “Indicator-based multi-objective evolutionary algorithms: A comprehensive survey,” ACM Comput. Surv., vol. 53, no. 2, p. 29, Mar. 2021.
    [25]
    J. G. Falcón-Cardona, H. Ishibuchi, C. A. C. Coello, and M. Emmerich, “On the effect of the cooperation of indicator-based multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 25, no. 4, pp. 681–695, Aug. 2021. doi: 10.1109/TEVC.2021.3061545
    [26]
    J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76, Mar. 2011. doi: 10.1162/EVCO_a_00009
    [27]
    E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective search,” in Proc. 8th Int. Conf. Parallel Problem Solving from Nature, Birmingham, UK, 2004, pp. 832–842.
    [28]
    R. H. Gómez and C. A. C. Coello, “A hyper-heuristic of scalarizing functions,” in Proc. Genetic and Evolutionary Computation Conf., Berlin, Germany, 2017, pp. 577–584.
    [29]
    F. Li, R. Cheng, J. C. Liu, and Y. C. Jin, “A two-stage R2 indicator-based evolutionary algorithm for many-objective optimization,” Appl. Soft Comput., vol. 67, pp. 245–260, Jun. 2018. doi: 10.1016/j.asoc.2018.02.048
    [30]
    A. Menchaca-Mendez and C. A. C. Coello, “An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms,” Soft Comput., vol. 21, no. 4, pp. 861–884, Feb. 2017. doi: 10.1007/s00500-015-1819-x
    [31]
    H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” in Proc. IEEE Congr. Evolutionary Computation (IEEE World Congr. Computational Intelligence), Hong Kong, China, 2008, pp. 2419–2426.
    [32]
    J. T. Shen, P. Wang, and X. J. Wang, “A controlled strengthened dominance relation for evolutionary many-objective optimization,” IEEE Trans. Cybern., vol. 52, no. 5, pp. 3645–3657, May 2020. doi: 10.1109/TCYB.2020.3015998
    [33]
    Q. Deng, Q. Kang, L. Zhang, M. C. Zhou, and J. An, “Objective space-based population generation to accelerate evolutionary algorithms for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., 2022, DOI: 10.1109/TEVC.2022.3166815.
    [34]
    L. M. Pang, H. Ishibuchi, and K. Shang, “Use of two penalty values in multiobjective evolutionary algorithm based on decomposition,” IEEE Trans. Cybern., 2022, DOI: 10.1109/TCYB.2022.3182167.
    [35]
    X. L. Ma, Y. N. Yu, X. D. Li, Y. T. Qi, and Z. X. Zhu, “A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 634–649, Aug. 2020.
    [36]
    H. L. Liu, F. Q. Gu, and Q. F. Zhang, “Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 450–455, Jun. 2014. doi: 10.1109/TEVC.2013.2281533
    [37]
    Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “Balancing convergence and diversity in decomposition-based many-objective optimizers,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 180–198, Apr. 2016. doi: 10.1109/TEVC.2015.2443001
    [38]
    M. Y. Wu, K. Li, S. Kwong, and Q. F. Zhang, “Evolutionary many-objective optimization based on adversarial decomposition,” IEEE Trans. Cybern., vol. 50, no. 2, pp. 753–764, Feb. 2020. doi: 10.1109/TCYB.2018.2872803
    [39]
    L. Chen, H. L. Liu, K. C. Tan, Y. M. Cheung, and Y. Wang, “Evolutionary many-objective algorithm using decomposition-based dominance relationship,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4129–4139, Dec. 2019. doi: 10.1109/TCYB.2018.2859171
    [40]
    M. Elarbi, S. Bechikh, A. Gupta, L. B. Said, and Y. S. Ong, “A new decomposition-based NSGA-Ⅱ for many-objective optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 7, pp. 1191–1210, Jul. 2018. doi: 10.1109/TSMC.2017.2654301
    [41]
    X. Y. Zhang, Y. Tian, and Y. C. Jin, “A knee point-driven evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 6, pp. 761–776, Dec. 2015. doi: 10.1109/TEVC.2014.2378512
    [42]
    Y. Liu, D. W. Gong, J. Sun, and Y. C. Jin, “A many-objective evolutionary algorithm using a one-by-one selection strategy,” IEEE Trans. Cybern., vol. 47, no. 9, pp. 2689–2702, Sept. 2017. doi: 10.1109/TCYB.2016.2638902
    [43]
    Y. Xiang, Y. R. Zhou, M. Q. Li, and Z. F. Chen, “A vector angle-based evolutionary algorithm for unconstrained many-objective optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 131–152, Feb. 2017. doi: 10.1109/TEVC.2016.2587808
    [44]
    Y. Tian, R. Cheng, X. Y. Zhang, Y. S. Su, and Y. C. Jin, “A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 2, pp. 331–345, Apr. 2019. doi: 10.1109/TEVC.2018.2866854
    [45]
    H. Pottmann and J. Wallner, “Models of line space,” in Computational Line Geometry, H. Pottmann and J. Wallne, Eds. Berlin, Germany: Springer, 2001, pp. 133–158.
    [46]
    V. D. Mil’man, “New proof of the theorem of A. Dvoretzky on intersections of convex bodies,” Funct. Anal. Appl., vol. 5, no. 4, pp. 288–295, Dec. 1971.
    [47]
    K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is “nearest neighbor” meaningful?” in Proc. 7th Int. Conf. Database Theory, Jerusalem, Israel, 1999, pp. 217–235.
    [48]
    Y. H. Wang, W. Hao, X. J. Ning, M. H. Zhao, J. L. Zhang, Z. H. Shi, and X. P. Zhang, “Automatic segmentation of urban point clouds based on the Gaussian map,” Photogramm. Rec., vol. 28, no. 144, pp. 342–361. Dec. 2013.
    [49]
    B. Schölkopf, A. Smola, and K. R. Müller, “Kernel principal component analysis,” in Proc. 7th Int. Conf. Lausanne on Artificial Neural Networks, Lausanne, Switzerland, 1997, pp. 583–588.
    [50]
    J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, Dec. 2000. doi: 10.1126/science.290.5500.2319
    [51]
    I. Das and J. E. Dennis, “Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–657, Aug. 1998. doi: 10.1137/S1052623496307510
    [52]
    K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multiobjective optimization,” in Evolutionary Multiobjective Optimization, A. Abraham, L. Jain, R. Goldberg, Eds. London, UK: Springer, 2005, pp. 105–145.
    [53]
    S. Huband, Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006. doi: 10.1109/TEVC.2005.861417
    [54]
    Y. Tian, R. Cheng, X. Y. Zhang, and Y. C. Jin, “PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov. 2017. doi: 10.1109/MCI.2017.2742868
    [55]
    M. Q. Li, S. X. Yang, and X. H. Liu, “Bi-goal evolution for many-objective optimization problems,” Artif. Intell., vol. 228, pp. 45–65, Nov. 2015. doi: 10.1016/j.artint.2015.06.007
    [56]
    H. D. Wang, L. C. Jiao, and X. Yao, “Two_Arch2: An improved two-archive algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 524–541, Aug. 2015. doi: 10.1109/TEVC.2014.2350987
    [57]
    Y. Tian, R. Cheng, X. Y. Zhang, F. Cheng, and Y. C. Jin, “An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 609–622, Aug. 2018. doi: 10.1109/TEVC.2017.2749619
    [58]
    Y. N. Sun, B. Xue, M. J. Zhang, and G. G. Yen, “A new two-stage evolutionary algorithm for many-objective optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 5, pp. 748–761, Oct. 2019. doi: 10.1109/TEVC.2018.2882166
    [59]
    Y. L. Zhou, Z. Min, J. H. Wang, Z. Z. Zhang, and J. Zhang, “Tri-goal evolution framework for constrained many-objective optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 8, pp. 3086–3099, Aug. 2020.
    [60]
    A. M. Zhou, Y. C. Jin, Q. F. Zhang, B. Sendhoff, and E. Tsang, “Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion,” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, Canada, 2006, pp. 892–899.
    [61]
    L. While, Hingston, L. Barone, and S. Huband, “A faster algorithm for calculating hypervolume,” IEEE Trans. Evol. Comput., vol. 10, no. 1, pp. 29–38, Feb. 2006. doi: 10.1109/TEVC.2005.851275
    [62]
    H. D. Wang, Y. C. Jin, and X. Yao, “Diversity assessment in many-objective optimization,” IEEE Trans. Cybern., vol. 47, no. 6, pp. 1510–1522, Jun. 2017. doi: 10.1109/TCYB.2016.2550502
    [63]
    M. Q. Li, L. L. Zhen, and X. Yao, “How to read many-objective solution sets in parallel coordinates [educational forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 88–100, Nov. 2017. doi: 10.1109/MCI.2017.2742869
    [64]
    J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.
    [65]
    Y. X. Wu, Q. Hu, Y. Li, L. Guo, X. Q. Zhu, and X. D. Wu, “OPP-Miner: Order-preserving sequential pattern mining for time series,” IEEE Trans. Cybern., 2022, DOI: 10.1109/TCYB.2022.3169327.
    [66]
    L. Zhang, K. F. Wang, L. Y. Xu, W. J. Sheng, and Q. Kang, “Evolving ensembles using multi-objective genetic programming for imbalanced classification,” Knowl. Based Syst., vol. 255, p. 109611, Nov. 2022. doi: 10.1016/j.knosys.2022.109611
    [67]
    Y. Q. Hou, Y. S. Ong, J. Tang, and Y. F. Zeng, “Evolutionary multiagent transfer learning with model-based opponent behavior prediction,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 10, pp. 5962–5976, Oct. 2021. doi: 10.1109/TSMC.2019.2958846
    [68]
    S. Yao, Q. Kang, M. C. Zhou, M. Rawa, and A. Albeshri, “Discriminative manifold distribution alignment for domain adaptation,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 2, pp. 1183–1197, Feb. 2023.
    [69]
    Q. Kang, S. Y. Yao, M. C. Zhou, K. Zhang, and A. Abusorrah, “Effective visual domain adaptation via generative adversarial distribution matching,” IEEE Trans. Neur. Net. Lear. System, vol. 32, no. 9, pp.3919–3929, Sept. 2021.
    [70]
    S. M. J. Jalali, S. Ahmadian, A. Kavousi-Fard, A. Khosravi, and S. Nahavandi, “Automated deep CNN-LSTM architecture design for solar irradiance forecasting,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 1, pp. 54–65, Jan. 2022. doi: 10.1109/TSMC.2021.3093519
  • JAS-2022-1573-supp_print.pdf

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(7)

    Article Metrics

    Article views (512) PDF downloads(101) Cited by()

    Highlights

    • This work uses line complex instead of solution points to design evolutionary strategy. By Plücker coordinates, solution points are projected to line elements composed of position vectors and momentum ones. The position vectors contain Euclidean coordinate information, while the momentum vectors provide extra distribution metrics which can help better evaluate the distribution of solutions, so as to design a more effective environment selection strategy
    • Euclidean distance is not suitable in high-dimensional space because of its poor discrimination, making the nearest neighbor search unstable, which leads to the selection of nondominated solutions even harder. This work designs a new distance function is designed as a more effective distance-based estimator. It makes the distance-based niche construction and the line complex-based environmental selection more effective
    • A novel MaOEA named NSGA-III/LCD is proposed by integrating the line complex-based environmental selection strategy into an NSGA-III framework to achieve better convergence while maintaining the diversity of solutions. Extensive experiments have been conducted to verify its highly competitive performance by comparing it with several well-known state of the art MOEAs

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return