A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 5
May  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. Y. Lei, S. C. Gao, Z. M. Zhang, H. C. Yang, and  H. T. Li,  “A chaotic local search-based particle swarm optimizer for large-scale complex wind farm layout optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1168–1180, May 2023. doi: 10.1109/JAS.2023.123387
Citation: Z. Y. Lei, S. C. Gao, Z. M. Zhang, H. C. Yang, and  H. T. Li,  “A chaotic local search-based particle swarm optimizer for large-scale complex wind farm layout optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1168–1180, May 2023. doi: 10.1109/JAS.2023.123387

A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization

doi: 10.1109/JAS.2023.123387
Funds:  This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP22H03643), Japan Science and Technology Agency (JST) Support for Pioneering Research Initiated by the Next Generation (SPRING) (JPMJSP2145), and JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation (JPMJFS2115)
More Information
  • Wind energy has been widely applied in power generation to alleviate climate problems. The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream. Wind farm layout optimization (WFLO) aims to reduce the wake effect for maximizing the power outputs of the wind farm. Nevertheless, the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm, which severely affect power conversion efficiency. Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios. Thus, a chaotic local search-based genetic learning particle swarm optimizer (CGPSO) is proposed to optimize large-scale WFLO problems. CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms. The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance, stability, and robustness. To be specific, a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local. It improves the solution quality. The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.


  • loading
  • [1]
    D. R. Liu, Y. C. Xu, Q. L. Wei, and X. L. Liu, “Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 36–46, Jan. 2018. doi: 10.1109/JAS.2017.7510739
    A. Behera, T. K. Panigrahi, K. Ray, and A. K. Sahoo, “A novel cascaded PID controller for automatic generation control analysis with renewable sources,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1438–1451, Nov. 2019. doi: 10.1109/JAS.2019.1911666
    A. G. Olabi and M. A. Abdelkareem, “Renewable energy and climate change,” Renew. Sustain. Energy Rev., vol. 158, p. 112111, Apr. 2022. doi: 10.1016/j.rser.2022.112111
    M. Hossain, A. S. N. Huda, S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. Stojcevski, and M. Ahmed, “A state-of-the-art review of hydropower in malaysia as renewable energy: Current status and future prospects,” Energy Strategy Rev., vol. 22, pp. 426–437, Nov. 2018. doi: 10.1016/j.esr.2018.11.001
    E. T. Sayed, T. Wilberforce, K. Elsaid, M. K. H. Rabaia, M. A. Abdelkareem, K. J. Chae, and A. G. Olabi, “A critical review on environmental impacts of renewable energy systems and mitigation strategies: Wind, hydro, biomass and geothermal,” Sci. Total Environ., vol. 766, p. 144505, Apr. 2021. doi: 10.1016/j.scitotenv.2020.144505
    M. J. Morshed, “A nonlinear coordinated approach to enhance the transient stability of wind energy-based power systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1087–1097, Jul. 2020. doi: 10.1109/JAS.2020.1003255
    R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, J. G. Schepers, W. Schlez, J. Phillips, K. Rados, A. Zervos, E. S. Politis, and K. Chaviaropoulos, “Modelling and measuring flow and wind turbine wakes in large wind farms offshore,” Wind Energy, vol. 12, no. 5, pp. 431–444, Jul. 2009. doi: 10.1002/we.348
    H. Habibi, I. Howard, S. Simani, and A. Fekih, “Decoupling adaptive sliding mode observer design for wind turbines subject to simultaneous faults in sensors and actuators,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 837–847, Apr. 2021. doi: 10.1109/JAS.2021.1003931
    J. C. Zhang and X. W. Zhao, “A novel dynamic wind farm wake model based on deep learning,” Appl. Energy, vol. 277, p. 115552, Nov. 2020. doi: 10.1016/j.apenergy.2020.115552
    S. X. Lv and L. Wang, “Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization,” Appl. Energy, vol. 311, p. 118674, Apr. 2022. doi: 10.1016/j.apenergy.2022.118674
    T. Kunakote, N. Sabangban, S. Kumar, G. G. Tejani, N. Panagant, N. Pholdee, S. Bureerat, and A. R. Yildiz, “Comparative performance of twelve metaheuristics for wind farm layout optimisation,” Arch. of Comput. Methods Eng., vol. 29, no. 1, pp. 717–730, Jan. 2022. doi: 10.1007/s11831-021-09586-7
    S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, “Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation,” Renew. Energy, vol. 38, no. 1, pp. 16–30, Feb. 2012. doi: 10.1016/j.renene.2011.06.033
    D. Guirguis, D. A. Romero, and C. H. Amon, “Gradient-based multidisciplinary design of wind farms with continuous-variable formulations,” Appl. Energy, vol. 197, pp. 279–291, Jul. 2017. doi: 10.1016/j.apenergy.2017.04.030
    J. Feng and W. Z. Shen, “Design optimization of offshore wind farms with multiple types of wind turbines,” Appl. Energy, vol. 205, pp. 1283–1297, Nov. 2017. doi: 10.1016/j.apenergy.2017.08.107
    G. Mosetti, C. Poloni, and B. Diviacco, “Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm,” J. Wind Eng. Ind. Aerodyn., vol. 51, no. 1, pp. 105–116, Jan. 1994. doi: 10.1016/0167-6105(94)90080-9
    G. Marmidis, S. Lazarou, and E. Pyrgioti, “Optimal placement of wind turbines in a wind park using Monte Carlo simulation,” Renew. Energy, vol. 33, no. 7, pp. 1455–1460, Jul. 2008. doi: 10.1016/j.renene.2007.09.004
    S. D. O. Turner, D. A. Romero, Y. Zhang, C. H. Amon, and T. C. Y. Chan, “A new mathematical programming approach to optimize wind farm layouts,” Renew. Energy, vol. 63, pp. 674–680, Mar. 2014. doi: 10.1016/j.renene.2013.10.023
    D. Cazzaro and D. Pisinger, “Variable neighborhood search for large offshore wind farm layout optimization,” Comput. Oper. Res., vol. 138, p. 105588, Feb. 2022. doi: 10.1016/j.cor.2021.105588
    X. X. Gao, Y. Li, F. Zhao, and H. Y. Sun, “Comparisons of the accuracy of different wake models in wind farm layout optimization,” Energy Explor. Exploit., vol. 38, no. 5, pp. 1725–1741, Sept. 2020. doi: 10.1177/0144598720942852
    F. Azlan, J. C. Kurnia, B. T. Tan, and M. Z. Ismadi, “Review on optimisation methods of wind farm array under three classical wind condition problems,” Renew. Sustain. Energy Rev., vol. 135, p. 110047, Jan. 2021. doi: 10.1016/j.rser.2020.110047
    N. O. Jensen, “A note on wind generator interaction,” Risø National Laboratory, Roskilde, Denmark, Risø-M No. 2411, Nov. 1983.
    G. C. Larsen, “A simple wake calculation procedure,” Risø National Laboratory, Roskilde, Denmark, Risø-M No. 2760, Dec. 1988.
    S. Frandsen, R. Barthelmie, S. Pryor, O. Rathmann, S. Larsen, J. Højstrup, and M. Thøgersen, “Analytical modelling of wind speed deficit in large offshore wind farms,” Wind Energy, vol. 9, no. 1–2, pp. 39–53, Jan.–Apr. 2006.
    X. X. Gao, H. X. Yang, and L. Lu, “Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model,” Appl. Energy, vol. 174, pp. 192–200, Jul. 2016. doi: 10.1016/j.apenergy.2016.04.098
    R. Y. He, H. X. Yang, H. Y. Sun, and X. X. Gao, “A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes,” Appl. Energy, vol. 296, p. 117059, Aug. 2021. doi: 10.1016/j.apenergy.2021.117059
    F. Y. Bai, X. L. Ju, S. Y. Wang, W. Y. Zhou, and F. Liu, “Wind farm layout optimization using adaptive evolutionary algorithm with Monte Carlo tree search reinforcement learning,” Energy Convers. Manage., vol. 252, p. 115047, Jan. 2022. doi: 10.1016/j.enconman.2021.115047
    S. Lumbreras and A. Ramos, “Optimal design of the electrical layout of an offshore wind farm applying decomposition strategies,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1434–1441, May 2013. doi: 10.1109/TPWRS.2012.2204906
    A. H. Schrotenboer, E. Ursavas, and I. F. A. Vis, “Mixed integer programming models for planning maintenance at offshore wind farms under uncertainty,” Transp. Res. Part C: Emerg. Technol., vol. 112, pp. 180–202, Mar. 2020. doi: 10.1016/j.trc.2019.12.014
    Y. R. Wang, Y. Yu, S. Y. Cao, X. Y. Zhang, and S. C. Gao, “A review of applications of artificial intelligent algorithms in wind farms,” Artif. Intell. Rev., vol. 53, no. 5, pp. 3447–3500, Jun. 2020. doi: 10.1007/s10462-019-09768-7
    K. Z. Gao, Z. G. Cao, L. Zhang, Z. H. Chen, Y. Y. Han, and Q. K. Pan, “A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 904–916, Jul. 2019. doi: 10.1109/JAS.2019.1911540
    X. Q. Shang, D. Y. Shen, F. Y. Wang, and T. R. Nyberg, “A heuristic algorithm for the fabric spreading and cutting problem in apparel factories,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 961–968, Jul. 2019. doi: 10.1109/JAS.2019.1911573
    A. J. Song, G. H. Wu, W. Pedrycz, and L. Wang, “Integrating variable reduction strategy with evolutionary algorithms for solving nonlinear equations systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 75–89, Jan. 2022. doi: 10.1109/JAS.2021.1004278
    C. Y. Lee, H. Hasegawa, and S. C. Gao, “Complex-valued neural networks: A comprehensive survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1406–1426, Aug. 2022. doi: 10.1109/JAS.2022.105743
    Z. Y. Lei, S. C. Gao, Z. M. Zhang, M. C. Zhou, and J. J. Cheng, “MO4: A many-objective evolutionary algorithm for protein structure prediction,” IEEE Trans. Evol. Comput., vol. 26, no. 3, pp. 417–430, Jun. 2022. doi: 10.1109/TEVC.2021.3095481
    X. Luo, Y. Yuan, S. L. Chen, N. Y. Zeng, and Z. D. Wang, “Position-transitional particle swarm optimization-incorporated latent factor analysis,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3958–3970, Aug. 2022. doi: 10.1109/TKDE.2020.3033324
    J. Chen, X. Luo, and M. C. Zhou, “Hierarchical particle swarm optimization-incorporated latent factor analysis for large-scale incomplete matrices,” IEEE Trans. Big Data, vol. 8, no. 6, pp. 1524–1536, Dec. 2022.
    J. Chen, R. F. Wang, D. Wu, and X. Luo, “A differential evolution-enhanced position-transitional approach to latent factor analysis,” IEEE Trans. Emerg. Top. Comput. Intell., 2022. DOI: 10.1109/TETCI.2022.3186673.
    S. A. Grady, M. Y. Hussaini, and M. M. Abdullah, “Placement of wind turbines using genetic algorithms,” Renew. Energy, vol. 30, no. 2, pp. 259–270, Feb. 2005. doi: 10.1016/j.renene.2004.05.007
    A. Emami and Noghreh, “New approach on optimization in placement of wind turbines within wind farm by genetic algorithms,” Renew. Energy, vol. 35, no. 7, pp. 1559–1564, Jul. 2010. doi: 10.1016/j.renene.2009.11.026
    Y. Chen, H. Li, K. Jin, and Q. Song, “Wind farm layout optimization using genetic algorithm with different hub height wind turbines,” Energy Convers. Manage., vol. 70, pp. 56–65, Jun. 2013. doi: 10.1016/j.enconman.2013.02.007
    X. X. Gao, H. X. Yang, L. Lin, and Koo, “Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore,” J. Wind Eng. Ind. Aerodyn., vol. 139, pp. 89–99, Apr. 2015. doi: 10.1016/j.jweia.2015.01.018
    Q. S. Yang, J. X. Hu, and S. S. Law, “Optimization of wind farm layout with modified genetic algorithm based on Boolean code,” J. Wind Eng. Ind. Aerodyn., vol. 181, pp. 61–68, Oct. 2018. doi: 10.1016/j.jweia.2018.07.019
    A. M. Abdelsalam and M. A. El-Shorbagy, “Optimization of wind turbines siting in a wind farm using genetic algorithm based local search,” Renew. Energy, vol. 123, pp. 748–755, Aug. 2018. doi: 10.1016/j.renene.2018.02.083
    M. S. Shang, Y. Yuan, X. Luo, and M. C. Zhou, “An α-β-divergence-generalized recommender for highly accurate predictions of missing user preferences,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8006–8018, Aug. 2022. doi: 10.1109/TCYB.2020.3026425
    X. L. Ju, F. Liu, L. Wang, and W. J. Lee, “Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners,” Energy Convers. Manage., vol. 196, pp. 1267–1281, Sept. 2019. doi: 10.1016/j.enconman.2019.06.082
    M. Beşkirli, İ. Koç, H. Haklı, and H. Kodaz, “A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm,” Renew. Energy, vol. 121, pp. 301–308, Jun. 2018. doi: 10.1016/j.renene.2017.12.087
    Y. Eroğlu and S. U. Seçkiner, “Design of wind farm layout using ant colony algorithm,” Renew. Energy, vol. 44, pp. 53–62, Aug. 2012. doi: 10.1016/j.renene.2011.12.013
    H. Hakli, “BinEHO: A new binary variant based on elephant herding optimization algorithm,” Neural Comput. Appl., vol. 32, no. 22, pp. 16971–16991, Nov. 2020. doi: 10.1007/s00521-020-04917-4
    A. C. Pillai, J. Chick, L. Johanning, and M. Khorasanchi, “Offshore wind farm layout optimization using particle swarm optimization,” J. Ocean Eng. Mar. Energy, vol. 4, no. 1, pp. 73–88, Feb. 2018. doi: 10.1007/s40722-018-0108-z
    H. Long, K. Li, and W. Gu, “A data-driven evolutionary algorithm for wind farm layout optimization,” Energy, vol. 208, p. 118310, Oct. 2020. doi: 10.1016/j.energy.2020.118310
    Z. R. Shu, Q. S. Li, and W. Chan, “Statistical analysis of wind characteristics and wind energy potential in Hong Kong,” Energy Convers. Manage., vol. 101, pp. 644–657, Sept. 2015. doi: 10.1016/j.enconman.2015.05.070
    Y. Li, X. Huang, K. F. Tee, Q. S. Li, and X. Wu, “Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China,” Sustain. Energy Technol. Assess., vol. 39, p. 100711, Jun. 2020.
    R. Shakoor, M. Y. Hassan, A. Raheem, and Y. K. Wu, “Wake effect modeling: A review of wind farm layout optimization using Jensen’s model,” Renew. Sustain. Energy Rev., vol. 58, pp. 1048–1059, May 2016. doi: 10.1016/j.rser.2015.12.229
    W. C. Hu, Q. S. Yang, H. Chen, K. Guo, T. Zhou, M. Liu, J. Zhang, and Z. T. Yuan, “A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm,” Energy, vol. 251, p. 123970, Jul. 2022. doi: 10.1016/j.energy.2022.123970
    Y. J. Gong, J. J. Li, Y. C. Zhou, Y. Li, H. S. H. Chung, Y. H. Shi, and J. Zhang, “Genetic learning particle swarm optimization,” IEEE Trans. Cybern., vol. 46, no. 10, pp. 2277–2290, Oct. 2016. doi: 10.1109/TCYB.2015.2475174
    Y. Yu, S. C. Gao, S. Cheng, Y. R. Wang, S. Y. Song, and F. G. Yuan, “CBSO: A memetic brain storm optimization with chaotic local search,” Memetic Comput., vol. 10, no. 4, pp. 353–367, Dec. 2018. doi: 10.1007/s12293-017-0247-0
    S. C. Gao, Y. Yu, Y. R. Wang, J. H. Wang, J. J. Cheng, and M. C. Zhou, “Chaotic local search-based differential evolution algorithms for optimization,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 6, pp. 3954–3967, Jun. 2021. doi: 10.1109/TSMC.2019.2956121
    C. Knowlson, A. Dean, L. Doherty, C. Fairhurst, S. Brealey, and D. J. Torgerson, “Recruitment patterns in multicentre randomised trials fit more closely to price’s law than the pareto principle: A review of trials funded and published by the united kingdom health technology assessment programme,” Contemp. Clin. Trials, vol. 113, p. 106665, Feb. 2022. doi: 10.1016/j.cct.2021.106665
    X. L. Ju and F. Liu, “Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation,” Appl. Energy, vol. 248, pp. 429–445, Aug. 2019. doi: 10.1016/j.apenergy.2019.04.084
    Z. Y. Lei, S. C. Gao, S. Gupta, J. J. Cheng, and G. Yang, “An aggregative learning gravitational search algorithm with self-adaptive gravitational constants,” Exp. Syst. Appl., vol. 152, p. 113396, Aug. 2020. doi: 10.1016/j.eswa.2020.113396
    Y. R. Wang, Y. Yu, S. C. Gao, H. Y. Pan, and G. Yang, “A hierarchical gravitational search algorithm with an effective gravitational constant,” Swarm Evol. Comput., vol. 46, pp. 118–139, May 2019. doi: 10.1016/j.swevo.2019.02.004
    J. J. Liang, A. K. Qin, N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun. 2006. doi: 10.1109/TEVC.2005.857610
    R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in Proc. IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013, pp. 71–78.
    B. Dao, “On wilcoxon rank sum test for condition monitoring and fault detection of wind turbines,” Appl. Energy, vol. 318, p. 119209, Jul. 2022. doi: 10.1016/j.apenergy.2022.119209
    D. Rey and M. Neuhäuser, “Wilcoxon-signed-rank test,” in Int. Encyclopedia of Statistical Science, M. Lovric, Ed. Berlin, Germany: Springer, 2011, pp. 1658–1659.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(11)

    Article Metrics

    Article views (612) PDF downloads(99) Cited by()


    • We proposed CGPSO for complex large-scale WFLO problems
    • We proposed chaotic local search strategy
    • The numerical results indicate that CGPSO significantly outperforms its peers
    • The effect of chaotic local search patterns and parameters is analyzed


    DownLoad:  Full-Size Img  PowerPoint