A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 10
Oct.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
L. Y. Fang, D. S. Zhu, J. Yue, B. Zhang, and M. He, “Geometric-spectral reconstruction learning for multi-source open-set classification with hyperspectral and LiDAR data,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1892–1895, Oct. 2022. doi: 10.1109/JAS.2022.105893
Citation: L. Y. Fang, D. S. Zhu, J. Yue, B. Zhang, and M. He, “Geometric-spectral reconstruction learning for multi-source open-set classification with hyperspectral and LiDAR data,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1892–1895, Oct. 2022. doi: 10.1109/JAS.2022.105893

Geometric-Spectral Reconstruction Learning for Multi-Source Open-Set Classification With Hyperspectral and LiDAR Data

doi: 10.1109/JAS.2022.105893
More Information
  • loading
  • [1]
    A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 1563–1572.
    [2]
    W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, Jul. 2013. doi: 10.1109/TPAMI.2012.256
    [3]
    P. Oza and V. M. Patel, “C2AE: Class conditioned auto-encoder for open-set recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2019, pp. 2307–2316.
    [4]
    C. Geng, S.-J. Huang, and S. Chen, “Recent advances in open set recognition: A survey,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3614–3631, Oct. 2021. doi: 10.1109/TPAMI.2020.2981604
    [5]
    Y. Liu, Y. H. Tang, L. X. Zhang, L, Liu, M. H. Song, et al., “Hyperspectral open set classification with unknown classes rejection towards deep networks,” Int. J. Remote Sensing, vol. 41, no. 16, pp. 6355–6383, 2020. doi: 10.1080/01431161.2020.1754492
    [6]
    R. Yoshihashi, W. Shao, R. Kawakami, S. You, M. Iida, and T. Naemura, “Classification-reconstruction learning for open-set recognition,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, 2019, pp. 4016–4025.
    [7]
    W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 36, no. 11, pp. 2317–2324, Nov. 2014.
    [8]
    L. Neal, M. Olson, X. Fern, W.-K. Wong, and F. Li, “Open set learning with counterfactual images,” in Proc. European Conf. Computer Vision, 2018, pp. 613–628.
    [9]
    J. Yue, D. Zhu, L. Fang, P. Ghamisi, and Y. Wang, “Adaptive spatial pyramid constraint for hyperspectral image classification with limited training samples,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021. doi: 10.1109/TGRS.2021.3095056
    [10]
    Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral–Spatial residual network for hyperspectral image classification: A 3D deep learning framework,” IEEE Trans. Geoscience and Remote Sensing, vol. 56, no. 2, pp. 847–858, Feb. 2018.
    [11]
    S. Xia, D. Chen, R. Wang, J. Li, and X. Zhang, “Geometric primitives in LiDAR point clouds: A review,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 685–707, 2020. doi: 10.1109/JSTARS.2020.2969119
    [12]
    J. Yue, W. Zhao, S. Mao, and H. Liu, “Spectral-spatial classification of hyperspectral images using deep convolutional neural networks,” Remote Sensing Letters, vol. 6, no. 6, pp. 468–477, 2015. doi: 10.1080/2150704X.2015.1047045
    [13]
    J. Kang, R. Fernandez-Beltran, Z. Wang, X. Sun, J. Ni, and A. Plaza, “Rotation-invariant deep embedding for remote sensing images,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
    [14]
    J. Kang, Z. Wang, R. Zhu, X. Sun, R. Fernandez-Beltran, and A. Plaza, “PiCoCo: Pixelwise contrast and consistency learning for semisupervised building footprint segmentation,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10548–10559, 2021. doi: 10.1109/JSTARS.2021.3119286
    [15]
    H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection method for imbalanced data classification,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 703–715, May 2019. doi: 10.1109/JAS.2019.1911447
    [16]
    S. Liu, Q. Shi, and L. Zhang, “Few-shot hyperspectral image classification with unknown classes using multitask deep learning,” IEEE Trans. Geoscience and Remote Sensing, vol. 59, no. 6, pp. 5085–5102, 2021. doi: 10.1109/TGRS.2020.3018879
    [17]
    W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, “Meta-recognition: The theory and practice of recognition score analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1689–1695, Aug. 2011. doi: 10.1109/TPAMI.2011.54
    [18]
    L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for hyperspectral image classification,” IEEE Trans. Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017. doi: 10.1109/TGRS.2016.2636241
    [19]
    J. Yue, L. Fang, H. Rahmani, and P. Ghamisi, “Self-supervised learning with adaptive distillation for hyperspectral image classification,” IEEE Trans. Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022. doi: 10.1109/TGRS.2021.3057768
    [20]
    J. Wang, J. Zhou, X. Liu, and F. Jahan, “Spectral and spatial residual attention network for joint hyperspectral and LIDAR data classification,” in Proc IEEE Int. Geoscience and Remote Sensing Symposium, Jul. 2021, pp. 278–281.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (160) PDF downloads(33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return