A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 2
Feb.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
H. Zhang, J. W. Sun, and Z. P. Wang, “Distributed control of nonholonomic robots without global position measurements subject to unknown slippage constraints,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 354–364, Feb. 2022. doi: 10.1109/JAS.2021.1004329
Citation: H. Zhang, J. W. Sun, and Z. P. Wang, “Distributed control of nonholonomic robots without global position measurements subject to unknown slippage constraints,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 354–364, Feb. 2022. doi: 10.1109/JAS.2021.1004329

Distributed Control of Nonholonomic Robots Without Global Position Measurements Subject to Unknown Slippage Constraints

doi: 10.1109/JAS.2021.1004329
Funds:  This work was supported by the National Natural Science Foundation of China (61922063, 61773289), Shanghai Shuguang Project (18SG18), Shanghai Natural Science Foundation (19ZR1461400), Shanghai Sailing Program (20YF1452900), and Fundamental Research Funds for the Central Universities
More Information
  • This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints. It is difficult for robots to obtain accurate and stable global position information in many cases, such as when indoors, tunnels and any other environments where GPS (global positioning system) is denied, thus it is meaningful to overcome the dependence on global position information. Additionally, unknown slippage, which is hard to avoid for wheeled robots due to the existence of ice, sand, or muddy roads, can not only affect the control performance of wheeled robot, but also limits the application scene of wheeled mobile robots. To solve both problems, a fully distributed finite time state observer which does not require any global position information is proposed, such that each follower robot can estimate the leader’s states within finite time. The distributed adaptive controllers are further designed for each follower robot such that the desired formation can be achieved while overcoming the effect of unknown slippage. Finally, the effectiveness of the proposed observer and control laws are verified by simulation results.

     

  • loading
  • [1]
    A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control using dynamic event-triggering mechanism for multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sep. 2020.
    [2]
    W. Qin, Z. X. Liu, and Z. Q. Chen, “Formation control for nonlinear multi-agent systems with linear extended state observer,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 171–179, Apr. 2014. doi: 10.1109/JAS.2014.7004547
    [3]
    Y. F. Su and J. Huang, “Cooperative output regulation of linear multi-agent systems,” IEEE Trans. Autom. Contr., vol. 57, no. 4, pp. 1062–1066, Apr. 2012. doi: 10.1109/TAC.2011.2169618
    [4]
    K. Sakurama, S. I. Azuma, and T. Sugie, “Distributed controllers for multi-agent coordination via gradient-flow approach,” IEEE Trans. Autom. Contr., vol. 60, no. 6, pp. 1471–1485, Jun. 2015. doi: 10.1109/TAC.2014.2374951
    [5]
    G. H. Lin, H. Y. Li, H. Ma, D. Y. Yao, and R. Q. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, 2020, to be published, doi: 10.1109/JAS.2020.1003596.
    [6]
    X. Yang, C. C. Hua, J. Yan, and X. P. Guan, “Adaptive formation control of cooperative teleoperators with intermittent communications,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2514–2523, Jul. 2019. doi: 10.1109/TCYB.2018.2826016
    [7]
    E. Montijano, E Cristofalo, D. J. Zhou, M. Schwager, and C. Sagüés, “Vision-based distributed formation control without an external positioning system,” IEEE Trans. Robot., vol. 32, no. 2, pp. 339–351, Apr. 2016. doi: 10.1109/TRO.2016.2523542
    [8]
    X. Yu and L. Liu, “Distributed circular formation control of ring-networked nonholonomic vehicles,” Automatica, vol. 68, pp. 92–99, Jun. 2016. doi: 10.1016/j.automatica.2016.01.056
    [9]
    A. Loria, J. Dasdemir, and N. A. Jarquin, “Leader-follower formation and tracking control of mobile robots along straight paths,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 2, pp. 727–732, Mar. 2016. doi: 10.1109/TCST.2015.2437328
    [10]
    X. W. Liang, H. S. Wang, Y. H. Liu, Z. Liu, and W. D. Chen, “Leader-following formation control of nonholonomic mobile robots with velocity observers,” IEEE/ASME Trans. Mech., vol. 25, no. 4, pp. 1747–1755, Aug. 2020. doi: 10.1109/TMECH.2020.2990991
    [11]
    A. R. Wei, X. M. Hu, and Y. Z. Wang, “Tracking control of leader-follower multi-agent systems subject to actuator saturation,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 84–91, Jan. 2014. doi: 10.1109/JAS.2014.7004624
    [12]
    X. Jin, “Nonrepetitive leader-follower formation tracking for multiagent systems with LOS range and angle constraints using iterative learning control,” IEEE Trans. Cybern., vol. 49, no. 5, pp. 1748–1758, May 2019. doi: 10.1109/TCYB.2018.2817610
    [13]
    R. R. Nair, L. Behera, V. Kumar, and M. Jamshidi, “Multisatellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control,” IEEE Syst. J., vol. 9, no. 2, pp. 508–518, Jun. 2015. doi: 10.1109/JSYST.2014.2335442
    [14]
    A. Sadowska, T. van den Broek, H. Huijberts, N. van de Wouw, D. Kostić, and H. Nijmeijer, “A virtual structure approach to formation control of unicycle mobile robots using mutual coupling,” Int. J. Contr., vol. 84, no. 11, pp. 1886–1902, Sep. 2011. doi: 10.1080/00207179.2011.627686
    [15]
    A. Askari, M. Mortazavi, and H. A. Talebi, “UAV formation control via the virtual structure approach,” J. Aerosp. Eng., vol. 28, no. 1, Article No. 04014047, Jan. 2015. doi: 10.1061/(ASCE)AS.1943-5525.0000351
    [16]
    T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Trans. Robot Autom., vol. 14, no. 6, pp. 926–939, Dec. 1998. doi: 10.1109/70.736776
    [17]
    J. Chen, M. G. Gan, J. Huang, L. H. Dou, and H. Fang, “Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control,” Sci. China Inf. Sci., vol. 59, no. 1, Article No. 010202, Jan. 2016.
    [18]
    H. Z. Xiao, Z. J. Li, and C. L. Philip, “Formation control of leader-follower mobile robots’ systems using model predictive control based on neural-dynamic optimization,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5752–5762, Sep. 2016. doi: 10.1109/TIE.2016.2542788
    [19]
    D. B. Shen, W. J. Sun, and Z. D. Sun, “Adaptive PID formation control of nonholonomic robots without leader’s velocity information,” ISA Trans., vol. 53, no. 2, pp. 474–480, Mar. 2014. doi: 10.1016/j.isatra.2013.12.010
    [20]
    M. N. Soorki, H. A. Talebi, and S. K. Y. Nikravesh, “Robust leader-following formation control of multiple mobile robots using Lyapunov redesign,” in Proc. 37th Ann. Conf. IEEE Industrial Electronics Society, Melbourne, Australia, 2011, pp. 277−282.
    [21]
    X. Yu and L. Liu, “Distributed formation control of nonholonomic vehicles subject to velocity constraints,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1289–1298, Feb. 2016. doi: 10.1109/TIE.2015.2504042
    [22]
    X. Chu, Z. X. Peng, G. G. Wen, and A. Rahmani, “Distributed formation tracking of multi-robot systems with nonholonomic constraint via event-triggered approach,” Neurocomputing, vol. 275, pp. 121–131, Jan. 2018. doi: 10.1016/j.neucom.2017.05.007
    [23]
    X. F. Chai, J. Liu, Y. Yu, and C. Y. Sun, “Observer-based self-triggered control for time-varying formation of multi-agent systems,” Sci. China Inf. Sci., vol. 64, no. 3, Article No. 132205, 2021. doi: 10.1007/s11432-019-2815-7
    [24]
    Y. Zou, Z. Q. Zhou, X. W. Dong, and Z. Y. Meng, “Distributed formation control for multiple vertical takeoff and landing UAVs with switching topologies,” IEEE/ASME Trans. Mech., vol. 23, no. 4, pp. 1750–1761, Aug. 2018. doi: 10.1109/TMECH.2018.2844306
    [25]
    M. Y. Ou, H. B. Du, and S. H. Li, “Finite-time formation control of multiple nonholonomic mobile robots,” Int. J. Robust Nonlin. Contr., vol. 24, no. 1, pp. 140–165, Jan. 2014. doi: 10.1002/rnc.2880
    [26]
    X. Chu, Z. X. Peng, G. G. Wen, and A. Rahmani, “Robust fixed-time consensus tracking with application to formation control of unicycles,” IET Contr. Theory Appl., vol. 12, no. 1, pp. 53–59, Jan. 2018. doi: 10.1049/iet-cta.2017.0319
    [27]
    Y. Wu, H. Ma, M. Chen, and H. Y. Li, “Observer-based fixed-time adaptive fuzzy bipartite containment control for multi-agent systems with unknown hysteresis,” IEEE Trans. Fuzzy Syst., 2021, to be published, doi: 10.1109/TFUZZ.2021.3057987.
    [28]
    H. Y. Li, Y. Wu, and M. Chen, “adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1163–1174, Mar. 2021. doi: 10.1109/TCYB.2020.2982168
    [29]
    Z. P. Wang, L. Wang, H. Zhang, L. Vlacic, and Q. J. Chen, “Distributed formation control of nonholonomic wheeled mobile robots subject to longitudinal slippage constraints,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 51, no. 5, pp. 2992–3003, May 2021. doi: 10.1109/TSMC.2019.2911975
    [30]
    Y. Tian and N. Sarkar, “Formation control of mobile robots subject to wheel slip,” in IEEE Proc. Int. Conf. Robotics and Autom., Saint Paul, USA, 2012, pp. 4553−4558.
    [31]
    Z. S. Cai, J. Zhao, and J. Cao, “Formation control and obstacle avoidance for multiple robots subject to wheel-slip,” Int. J. Adv. Robot. Syst., vol. 9, no. 5, pp. 1–15, May 2012.
    [32]
    S. J. Yoo and B. S. Park, “Formation tracking control for a class of multiple mobile robots in the presence of unknown skidding and slipping,” IET Contr. Theory Appl., vol. 7, no. 5, pp. 635–645, Mar. 2013. doi: 10.1049/iet-cta.2012.0179
    [33]
    J. L. Zhou, Y. Z. Lv, G. H. Wen, and X. H. Yu, “Resilient consensus of multiagent systems under malicious attacks: Appointed-time observer-based approach,” IEEE Trans. Cybern., 2021, to be published, doi: 10.1109/TCYB.2021.3058094.
    [34]
    M. Y. Cui, D. H. Sun, Y. F. Li, and W. N. Liu, “Adaptive tracking control of wheeled mobile robots in presence of longitudinal slipping,” Contr. and Decision, vol. 28, no. 5, pp. 664−670, May 2013.
    [35]
    J. G. Iossaqui and J. F. Camino, “Wheeled robot slip compensation for trajectory tracking control problem with time-varying reference input,” in Proc. 9th Int. Workshop Robot Motion and Control, Kuslin, Poland, 2013, pp. 167−173.
    [36]
    H. Chen, “Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation,” Int. J. Contr. Autom. Syst., vol. 12, no. 6, pp. 1216–1224, Oct. 2014. doi: 10.1007/s12555-013-0492-z

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1894) PDF downloads(109) Cited by()

    Highlights

    • The fully distributed formation control of multi-robot system without global position information while overcoming the effect of the unknown slippage constraint is proposed
    • Unknown slippage, which is hard to avoid for wheeled robots due to the existence of ice, sand, or muddy roads, can not only affect the control performance of wheeled robot, but also limits the application scene of wheeled mobile robots. Novel adaptive formation controllers and adaptive laws are proposed in the paper to achieve distributed control under the unknown slippage constrain
    • It is difficult for robots to obtain accurate and stable global position information in many cases, such as when indoors, tunnels and any other environments where GPS (global positioning system) is denied. It is meaningful to overcome the dependence on global position information, therefore, a novel distributed finite time state observer without using any global position information is proposed in this paper to obtain the related states of the leader

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return