A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 3
Mar.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 6.171, Top 11% (SCI Q1)
    CiteScore: 11.2, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Lion Silva, Naercio Magaia, Breno Sousa, Anna Kobusińska, António Casimiro, Constandinos X. Mavromoustakis, George Mastorakis and Victor Hugo C. de Albuquerque, "Computing Paradigms in Emerging Vehicular Environments: A Review," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 491-511, Mar. 2021. doi: 10.1109/JAS.2021.1003862
Citation: Lion Silva, Naercio Magaia, Breno Sousa, Anna Kobusińska, António Casimiro, Constandinos X. Mavromoustakis, George Mastorakis and Victor Hugo C. de Albuquerque, "Computing Paradigms in Emerging Vehicular Environments: A Review," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 491-511, Mar. 2021. doi: 10.1109/JAS.2021.1003862

Computing Paradigms in Emerging Vehicular Environments: A Review

doi: 10.1109/JAS.2021.1003862
Funds:  This work was supported by FCT through the LASIGE Research Unit (UIDB/00408/2020, UIDP/00408/2020) and the Brazilian National Council for Research and Development (CNPq) (#304315/2017-6, #430274/2018-1)
More Information
  • Determining how to structure vehicular network environments can be done in various ways. Here, we highlight vehicle networks’ evolution from vehicular ad-hoc networks (VANET) to the internet of vehicles (IoVs), listing their benefits and limitations. We also highlight the reasons in adopting wireless technologies, in particular, IEEE 802.11p and 5G vehicle-to-everything, as well as the use of paradigms able to store and analyze a vast amount of data to produce intelligence and their applications in vehicular environments. We also correlate the use of each of these paradigms with the desire to meet existing intelligent transportation systems’ requirements. The presentation of each paradigm is given from a historical and logical standpoint. In particular, vehicular fog computing improves on the deficiences of vehicular cloud computing, so both are not exclusive from the application point of view. We also emphasize some security issues that are linked to the characteristics of these paradigms and vehicular networks, showing that they complement each other and share problems and limitations. As these networks still have many opportunities to grow in both concept and application, we finally discuss concepts and technologies that we believe are beneficial. Throughout this work, we emphasize the crucial role of these concepts for the well-being of humanity.

     

  • loading
  • [1]
    R. Sánchez-Corcuera, A. Nuñez-Marcos, J. Sesma-Solance, A. Bilbao-Jayo, R. Mulero, U. Zulaika, G. Azkune, and A. Almeida, “Smart cities survey: Technologies, application domains and challenges for the cities of the future,” Int. J. Distrib. Sens. Netw., vol. 15, no. 6, Jun. 2019.
    [2]
    L. Zhao, X. W. Li, B. Gu, Z. Y. Zhou, S. Mumtaz, V. Frascolla, H. Gacanin, M. I. Ashraf, J. Rodriguez, M. F. Yang, and S. Al-Rubaye, “Vehicular communications: Standardization and open issues,” IEEE Commun. Stand. Mag., vol. 2, no. 4, pp. 74–80, Dec. 2018. doi: 10.1109/MCOMSTD.2018.1800027
    [3]
    C. Huang, R. X. Lu, and K. K. R. Choo, “Vehicular fog computing: Architecture, use case, and security and forensic challenges,” IEEE Commun. Mag., vol. 55, no. 11, pp. 105–111, Nov. 2017. doi: 10.1109/MCOM.2017.1700322
    [4]
    A. N. Barreto, B. Faria, E. Almeida, I. Rodriguez, M. Lauridsen, R. Amorim, and R. Vieira, “5G - wireless communications for 2020,” J. Commun. Inf. Syst., vol. 31, no. 1, pp. 146–163, Jun. 2016.
    [5]
    M. S. Afaqui, E. Garcia-Villegas, and E. Lopez-Aguilera, “IEEE 802.11ax: Challenges and requirements for future high efficiency WiFi,” IEEE Wirel. Commun., vol. 24, no. 3, pp. 130–137, Jun. 2017. doi: 10.1109/MWC.2016.1600089WC
    [6]
    D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for wireless access in vehicular environments,” in Proc. IEEE Vehicular Technology Conf. VTC Spring, Singapore, 2008, pp. 2036–2040.
    [7]
    A. Festag, “Standards for vehicular communication – From IEEE 802.11p to 5G,” Elektrotech. Inf., vol. 132, no. 7, pp. 409–416, Nov. 2015. doi: 10.1007/s00502-015-0343-0
    [8]
    E. Comission, “Commission delegated regulation directive 2010/40/EU,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019.
    [9]
    A. Bazzi, G. Cecchini, M. Menarini, B. M. Masini, and A. Zanella, “Survey and perspectives of vehicular Wi-Fi versus sidelink cellular-V2X in the 5G era,” Future Internet, vol. 11, no. 6, pp. 122, May 2019. doi: 10.3390/fi11060122
    [10]
    M. Slovick, DSRC vs. C-V2X: Looking to impress the regulators [Online]. Available: https://www.eenewseurope.com/news/dsrc-vs-c-v2x-looking-impress-regulators/page/0/1. Accessed on: Oct. 06, 2017.
    [11]
    A. Molinaro and C. Campolo, “5G for V2X communications,” in The 5G Italy Book 2019: A Multiperspective View of 5G, M. A. Marsan, N. B. Melazzi, S. Buzzi, and S. Palazzo, Eds. 2019, pp. 375–392.
    [12]
    A. D. Tom Rebbeck, J. Stewart, H.-A. Lacour, A. Killeen, and D. McClure, “Socio-economic benefits of cellular V2X – Final report for 5GAA,” [Online]. Available: http://5gaa.org/wp-content/uploads/2017/12/Final-report-for-5GAA-on-cellular-V2X-socio-economic-benefits-051217_FINAL.pdf. 2017.
    [13]
    5G Automotive Association, “V2X functional and performance test report; test procedures and results,” 5GAA P-190033, pp. 25–62, Oct. 2018.
    [14]
    J. Yoshida, “The DSRC vs 5G debate continues,” 2019. [Online]. Available: https://www.eetasia.com/news/article/The-DSRC-vs-5G-Debate-Continues.
    [15]
    ABI Research, “V2X system cost analysis: Dsrc+Lte and C-V2X+Lte,” pp.8–9, 2018.
    [16]
    T. Hasegawa, “Intelligent transport systems,” in Traffic and Safety Science – Interdiciplinary Wisdom of IATSS, Tokyo, pp. 49–60. [Online]. Available: https://www.iatss.or.jp/common/pdf/en/publication/comme- morative-publication/iatss40_theory_05.pdf. 2015.
    [17]
    M. M. Ishaque and R. B. Noland, “Making roads safe for pedestrians or keeping them out of the way?: An historical perspective on pedestrian policies in Britain” J. Transp. Hist., vol. 27, no. 1, pp. 115–137, Mar. 2006. doi: 10.7227/TJTH.27.1.8
    [18]
    L. Figueiredo, I. Jesus, J. A. T. Machado, J. R. Ferreira, and J. L. M. De Carvalho, “Towards the development of intelligent transportation systems,” in Proc. IEEE Conf. Intelligent Trans. Systems, Oakland, USA, 2001, pp. 1206–1211.
    [19]
    M. Chavret, “Intelligent transport systems,” in Systems of Systems, vol. 1, 2013, pp. 223–234. DOI: 10.1002/9781118557495.ch6
    [20]
    Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions, ETSI TR 102 638 V1.1.1 (2009-06), 2009.
    [21]
    S. Mandžuka, “Intelligent transport systems,” A Dict. Transp. Anal., pp. 210–214, 2010.
    [22]
    M. Moustafa, Hassnaa, Senouci, S. Mihammed, and Jerbi, “Introduction to vehicular networks,” Springer Briefs Comput. Sci., pp. 1–8, 2013.
    [23]
    M. Alsabaan, W. Alasmary, A. Albasir, and K. Naik, “Vehicular networks for a greener environment: A survey,” IEEE Commun. Surv. Tut., vol. 15, no. 3, pp. 1372–1388, Jan. 2013. doi: 10.1109/SURV.2012.101912.00184
    [24]
    V. Jindal and P. Bedi, “Vehicular Ad-Hoc networks: Introduction, standards, routing protocols and challenges,” Int. J. Comput. Sci. Iss., vol. 13, no. 2, pp. 44–55, Mar. 2016. doi: 10.20943/01201602.4455
    [25]
    F. Arena and G. Pau, “An overview of vehicular communications,” Future Internet, vol. 11, no. 2, pp. 27, Jan. 2019. doi: 10.3390/fi11020027
    [26]
    M. S. Sheikh, J. Liang, and W. S. Wang, “A survey of security services, attacks, and applications for vehicular ad hoc networks (VANETs),” Sensors, vol. 19, no. 16, pp. 3589, Aug. 2019. doi: 10.3390/s19163589
    [27]
    J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet of vehicles: Architecture, protocols, and security,” IEEE Internet Things J., vol. 5, no. 5, pp. 3701–3709, Oct. 2018. doi: 10.1109/JIOT.2017.2690902
    [28]
    O. Kaiwartya, A. H. Abdullah, Y. Cao, A. Altameem, M. Prasad, C. T. Lin, and X. L. Liu, “Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects,” IEEE Acc., vol. 4, pp. 5356–5373, Sept. 2016. doi: 10.1109/ACCESS.2016.2603219
    [29]
    N. Magaia and Z. G. Sheng, “ReFIoV: A novel reputation framework for information-centric vehicular applications,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1810–1823, Feb. 2019. doi: 10.1109/TVT.2018.2886572
    [30]
    K. Golestan, R. Soua, F. Karray, and M. S. Kamel, “Situation awareness within the context of connected cars: A comprehensive review and recent trends,” Inf. Fusion, vol. 29, pp. 68–83, May 2016. doi: 10.1016/j.inffus.2015.08.001
    [31]
    GSMA, “Connected society the state of mobile internet connectivity 2019,” pp.6–7, 2019. [Online]. Available: https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/07/GSMA-State-of-Mobile-Internet-Connectivity-Report-2019.pdf
    [32]
    GSMA, “2020 the mobile economy,” GSMA, 2019. [Online]. Available: https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.
    [33]
    N. Safety Council, “Injury facts: The source for injury stats,” Injury Facts, 2018. [Online]. Available: https://injuryfacts.nsc.org/motor-vehicle/overview/introduction/.
    [34]
    ERSO, “Annual accident report 2018, European Road Safety Observatory,” pp. 53–76, 2018. [Online]. Available: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf
    [35]
    M. Li, L. H. Zhu, and X. D. Lin, “Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing,” IEEE Internet Things J., vol. 6, no. 3, pp. 4573–4584, Jun. 2019. doi: 10.1109/JIOT.2018.2868076
    [36]
    Z. Ning, Y. F. Feng, M. Collotta, X. J. Kong, X. J. Wang, L. Guo, X. P. Hu, and B. Hu, “Deep learning in edge of vehicles: Exploring trirelationship for data transmission,” IEEE Trans. Ind. Inform., vol. 15, no. 10, pp. 5737–5746, Oct. 2019. doi: 10.1109/TII.2019.2929740
    [37]
    W. J. Chang, L. B. Chen, and K. Y. Su, “DeepCrash: A deep learning-based internet of vehicles system for head-on and single-vehicle accident detection with emergency notification,” IEEE Acc., vol. 7, pp. 148163–148175, Oct. 2019. doi: 10.1109/ACCESS.2019.2946468
    [38]
    P. Mell and T. Grance, “The NIST-national institute of standars and technology - definition of cloud computing,” in NIST Spec. Publ. 800–145, 2011, pp. 7.
    [39]
    L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: Towards a cloud definition,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, Dec. 2008. doi: 10.1145/1496091.1496100
    [40]
    T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in Proc. 24th Int. Conf. Advanced Information Networking and Applications, Perth, Australia, 2010, pp. 27–33.
    [41]
    N. Grozev and R. Buyya, “Inter-cloud architectures and application brokering: Taxonomy and survey,” Softw.:Pract. Exp., vol. 44, no. 3, pp. 369–390, Mar. 2014. doi: 10.1002/spe.2168
    [42]
    B. Varghese and R. Buyya, “Next generation cloud computing: New trends and research directions,” Future Gener. Comput. Syst., vol. 79, pp. 849–861, Feb. 2018. doi: 10.1016/j.future.2017.09.020
    [43]
    J. F. Wan, C. F. Zou, K. L. Zhou, R. S. Lu, and D. Li, “IoT sensing framework with inter-cloud computing capability in vehicular networking,” Electron. Commer. Res., vol. 14, no. 3, pp. 389–416, Nov. 2014. doi: 10.1007/s10660-014-9147-2
    [44]
    I. Odun-Ayo, M. Ananya, F. Agono, and R. Goddy-Worlu, “Cloud computing Architecture: A critical analysis,” in Proc. 18th Int. Conf. Computational Science and Applications, Melbourne, Australia, 2018, pp. 1–7.
    [45]
    R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud: Utility-oriented federation of cloud computing environments for scaling of application services,” in Proc. 10th Int. Conf. Algorithms and Architectures for Parallel Processing, Busan, Korea, 2010, pp. 13–31.
    [46]
    M. Vukolić, “The byzantine empire in the intercloud,” ACM SIGACT News, vol. 41, no. 3, pp. 26–28, Sept. 2010. doi: 10.1145/1855118.1855122
    [47]
    A. J. Ferrer, “Inter-cloud Research: Vision for 2020,” Procedia Comput. Sci., vol. 97, pp. 140–143, 2016. doi: 10.1016/j.procs.2016.08.292
    [48]
    M. Liaqat, V. Chang, A. Gani, S. H. A. Hamid, M. Toseef, U. Shoaib, and R. L. Ali, “Federated cloud resource management: Review and discussion,” J. Netw. Comput. Appl., vol. 77, pp. 87–105, Jan. 2017. doi: 10.1016/j.jnca.2016.10.008
    [49]
    J. W. Rittinghouse and J. F. Ransome, Cloud Computing: Implementation, Management, and Security. Raton, USA: CRC Press, 2010.
    [50]
    I. Costa, J. Araujo, J. Dantas, E. Campos, F. A. Silva, and P. Maciel, “Availability evaluation and sensitivity analysis of a mobile backend-as-a-service platform,” Qual. Reliab. Eng. Int., vol. 32, no. 7, pp. 2191–2205, Nov. 2016. doi: 10.1002/qre.1927
    [51]
    C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan, and N. Zeldovich, “Relational cloud: A database-as-a-service for the cloud,” in Proc. 5th Biennial Conf. Innovative Data Systems Research, Asilomar, USA, 2011, pp. 235–240.
    [52]
    P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf, “NaaS: Network-as-a-service in the cloud,” in Proc. 2nd USENIX Conf. Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, San Jose, USA, 2012, pp. 1–6.
    [53]
    L. F. Albuquerque Jr, F. S. Ferraz, R. F. A. P. Oliveira, and S. M. L. Galdino, “Function-as-a-service X Platform-as-a-service: Towards a comparative study on FaaS and PaaS,” in Proc. 12th Int. Conf. Softw. Eng. Adv. Funct., no. c, pp. 206–212, 2017.
    [54]
    J. Bi, H. T. Yuan, W. Tan, M. C. Zhou, Y. S. Fan, J. Zhang, and J. Q. Li, “Application-aware dynamic fine-grained resource provisioning in a virtualized cloud data center,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 2, pp. 1172–1184, Apr. 2017. doi: 10.1109/TASE.2015.2503325
    [55]
    H. Yuan, J. Bi, W. Tan, M. C. Zhou, B. H. Li, and J. Li, “TTSA: An effective scheduling approach for delay bounded tasks in hybrid clouds,” IEEE Trans. Cybern., vol. 47, no. 11, pp. 3658–3668, Nov. 2017. doi: 10.1109/TCYB.2016.2574766
    [56]
    A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, “Fog computing: Principles, architectures, and applications,” in Internet of Things: Principles and Paradigms, R. Buyya and A. V. Dastjerdi, Eds. Amsterdam, Netherlands: Elsevier, 2016, pp. 61–75.
    [57]
    OpenFog Consortium Architecture Working Group, “OpenFog reference architecture for fog computing,” 2017. [Online]. Available: https://iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf.
    [58]
    E. Wikström and U. M. Emilsson, “Autonomy and control in everyday life in care of older people in nursing homes,” J. Hous. Elderly, vol. 28, no. 1, pp. 41–62, Mar. 2014. doi: 10.1080/02763893.2013.858092
    [59]
    J. W. Xu, K. Ota, and M. X. Dong, “A real plug-and-play fog: Implementation of service placement in wireless multimedia networks,” China Commun., vol. 16, no. 10, pp. 191–201, Oct. 2019. doi: 10.23919/JCC.2019.10.012
    [60]
    W. Yu, F. Liang, X. F. He, W. G. Hatcher, C. Lu, J. Lin, and X. Y. Yang, “A survey on the edge computing for the internet of things,” IEEE Acc., vol. 6, pp. 6900–6919, Nov. 2017.
    [61]
    R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy, survey and future directions,” in Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives, B. Di Martino, K. C. Li, L. T. Yang, and A. Esposito, Eds. Singapore: Springer, 2018, pp. 103–130.
    [62]
    R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. X. Gao, Y. Xiang, and R. Ranjan, “Fog computing: Survey of trends, architectures, requirements, and research directions,” IEEE Acc., vol. 6, pp. 47980–48009, Aug. 2018. doi: 10.1109/ACCESS.2018.2866491
    [63]
    M. Gushev, “Dew computing architecture for cyber-physical systems and IoT,” Internet Things, vol. 11, no. 100186, Sept. 2020.
    [64]
    M. Uehara, “Mist computing: Linking cloudlet to fogs,” in Computational Science/Intelligence and Applied Informatics, R. Lee, Ed. Cham, Germany: Springer, 2018, pp. 201–213.
    [65]
    M. Satyanarayanan, “The emergence of edge computing,” in Computer, vol. 50, no. 1, pp. 30–39, Jan. 2017, DOI: 10.1109/MC.2017.9.
    [66]
    U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet deployment in local wireless networks: Motivation, architectures, applications, and open challenges,” J. Netw. Comput. Appl., vol. 62, pp. 18–40, Feb. 2016. doi: 10.1016/j.jnca.2015.11.009
    [67]
    E. Lee, E. K. Lee, M. Gerla, and S. Y. Oh, “Vehicular cloud networking: Architecture and design principles,” IEEE Commun. Mag., vol. 52, no. 2, pp. 148–155, Feb. 2014. doi: 10.1109/MCOM.2014.6736756
    [68]
    R. Hussain, J. Son, H. Eun, S. Kim, and H. Oh, “Rethinking vehicular communications: Merging VANET with cloud computing,” in Proc. 4th IEEE Int. Conf. Cloud Computing Technology and Science, Taipei, China, 2012, pp. 606–609.
    [69]
    M. Sookhak, F. R. Yu, Y. He, H. Talebian, N. S. Safa, N. Zhao, M. K. Khan, and N. Kumar, “Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing,” IEEE Veh. Technol. Mag., vol. 12, no. 3, pp. 55–64, Sept. 2017. doi: 10.1109/MVT.2017.2667499
    [70]
    H. A. Khattak, S. U. I. Islam, I. U. Din, and M. Guizani, “Integrating fog computing with VANETs: A consumer perspective,” IEEE Commun. Stand. Mag., vol. 3, no. 1, pp. 19–25, Mar. 2019. doi: 10.1109/MCOMSTD.2019.1800050
    [71]
    M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp. 30–39, Jan. 2017. doi: 10.1109/MC.2017.9
    [72]
    L. Liu, C. Chen, Q. Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge computing and networking: A survey,” Mob. Netw. Appl., DOI: 10.1007/s11036-020-01624-1
    [73]
    L. Tuyisenge, M. Ayaida, S. Tohme, and L. E. Afilal, “Network architectures in internet of vehicles (IoV): Review, protocols analysis, challenges and issues,” in Proc. 5th Int. Conf. Internet of Vehicles. Technologies and Services Towards Smart City, Paris, France, 2018, pp. 3–13.
    [74]
    T. G. Jiang, H. Fang, and H. G. Wang, “Blockchain-based internet of vehicles: Distributed network architecture and performance analysis,” IEEE Internet Things J., vol. 6, no. 3, pp. 4640–4649, Jun. 2019. doi: 10.1109/JIOT.2018.2874398
    [75]
    V. Fux, P. Maillé, and M. Cesana, “Price competition between road side units operators in vehicular networks,” in Proc. IFIP Networking Conf, Trondheim, Norway, 2014.
    [76]
    T. Mekki, I. Jabri, A. Rachedi, and M. ben Jemaa, “Vehicular cloud networks: Challenges, architectures, and future directions,” Veh. Commun., vol. 9, pp. 268–280, Jul. 2017.
    [77]
    X. S. Hou, Y. Li, M. Chen, D. Wu, D. P. Jin, and S. Chen, “Vehicular fog computing: A viewpoint of vehicles as the infrastructures,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016. doi: 10.1109/TVT.2016.2532863
    [78]
    V. G. Menon, “Moving from vehicular cloud computing to vehicular fog computing: Issues and challenges,” Int. J. Comput. Sci. Eng., vol. 9, no. 2, pp. 14–18, Feb. 2017.
    [79]
    W. Xu, H. B. Zhou, N. Cheng, F. Lyu, W. S. Shi, J. Y. Chen, and X. M. Shen, “Internet of vehicles in big data era,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 19–35, Jan. 2018. doi: 10.1109/JAS.2017.7510736
    [80]
    D. L. Xu, Y. Li, X. L. Chen, J. B. Li, P. Hui, S. Chen, and J. Crowcroft, “A survey of opportunistic offloading,” IEEE Commun. Surv. Tut., vol. 20, no. 3, pp. 2198–2236, Feb. 2018. doi: 10.1109/COMST.2018.2808242
    [81]
    A. B. De Souza, P. A. Leal Rego, and J. N. De Souza, “Exploring computation offloading in vehicular clouds,” in Proc. IEEE 8th Int. Conf. Cloud Networking, Coimbra, Portugal, 2019, pp. 12–15.
    [82]
    F. Rebecchi, M. Dias De Amorim, V. Conan, A. Passarella, R. Bruno, and M. Conti, “Data offloading techniques in cellular networks: A survey,” IEEE Commun. Surv. Tut., vol. 17, no. 2, pp. 580–603, Apr. 2015. doi: 10.1109/COMST.2014.2369742
    [83]
    M. Gong and S. Ahn, “Computation offloading- based task scheduling in the vehicular communication environment for computation-intensive vehicular tasks,” in Proc. Int. Conf. Artificial Intelligence in Information and Communication, Fukuoka, Japan, 2020, pp. 534–537.
    [84]
    O. Senouci, Z. Aliouat, and S. Harous, “A review of routing protocols in internet of vehicles and their challenges,” Sens. Rev., vol. 39, no. 1, pp. 58–70, Jan. 2019. doi: 10.1108/SR-08-2017-0168
    [85]
    P. Bagga, A. K. Das, M. Wazid, J. J. P. C. Rodrigues, and Y. Park, “Authentication protocols in internet of vehicles: Taxonomy, analysis, and challenges,” IEEE Acc., vol. 8, pp. 54314–54344, Mar. 2020. doi: 10.1109/ACCESS.2020.2981397
    [86]
    H. Al Najada and I. Mahgoub, “Anticipation and alert system of congestion and accidents in VANET using big data analysis for intelligent transportation systems,” in Proc. IEEE Symp. Series on Computational Intelligence, Athens, Greece, 2016.
    [87]
    Z. Y. Zhou, F. Xiong, H. J. Yu, C. Xu, S. Mumtaz, J. Rodriguez, and M. Tariq, “Trajectory-based reliable content distribution in D2D-based cooperative vehicular networks: A coalition formation approach,” IEEE Trans. Intell. Trans. Syst., vol. 19, no. 3, pp. 953–964, Mar. 2018. doi: 10.1109/TITS.2017.2771519
    [88]
    P. Gomes, N. Magaia, and N. Neves, “Industrial and artificial internet of things with augmented reality,” in Convergence of Artificial Intelligence and the Internet of Things, G. Mastorakis, C. X. Mavromoustakis, J. M. Batalla, and E. Pallis, Eds. Cham, Germany: Springer, 2020, pp. 323–346.
    [89]
    Z. L. Ning, P. R. Dong, X. J. Wang, M. S. Obaidat, X. P. Hu, L. Guo, Y. Guo, J. Huang, B. Hu, and Y. Li, “When deep reinforcement learning meets 5G-enabled vehicular networks: A distributed offloading framework for traffic big data,” IEEE Trans. Ind. Informatics, vol. 16, no. 2, pp. 1352–1361, Feb. 2020. doi: 10.1109/TII.2019.2937079
    [90]
    A. H. Sodhro, Z. W. Luo, G. H. Sodhro, M. Muzamal, J. J. P. C. Rodrigues, and V. H. C. de Albuquerque, “Artificial intelligence based QoS optimization for multimedia communication in IoV systems,” Future Gener. Comput. Syst., vol. 95, pp. 667–680, Jun. 2019. doi: 10.1016/j.future.2018.12.008
    [91]
    A. H. Sodhro, G. H. Sodhro, M. Guizani, S. Pirbhulal, and A. Boukerche, “AI-enabled reliable channel modeling architecture for fog computing vehicular networks,” IEEE Wirel. Commun., vol. 27, no. 2, pp. 14–21, Apr. 2020. doi: 10.1109/MWC.001.1900311
    [92]
    F. X. Tang, Y. Kawamoto, N. Kato, and J. J. Liu, “Future intelligent and secure vehicular network toward 6G: Machine-learning approaches,” Proc. IEEE, vol. 108, no. 2, pp. 292–307, Feb. 2020. doi: 10.1109/JPROC.2019.2954595
    [93]
    J. W. Kang, Z. H. Xiong, D. Niyato, D. D. Ye, D. I. Kim, and J. Zhao, “Toward secure blockchain-enabled internet of vehicles: Optimizing consensus management using reputation and contract theory,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2906–2920, Mar. 2019. doi: 10.1109/TVT.2019.2894944
    [94]
    U. Javaid, M. N. Aman, and B. Sikdar, “A scalable protocol for driving trust management in internet of vehicles with blockchain,” IEEE Internet Things J., DOI: 10.1109/JIOT.2020.3002711
    [95]
    X. L. Wang, P. J. Zeng, N. Patterson, F. Jiang, and R. Doss, “An improved authentication scheme for internet of vehicles based on blockchain technology,” IEEE Acc., vol. 7, pp. 45061–45072, Apr. 2019. doi: 10.1109/ACCESS.2019.2909004
    [96]
    W. H. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “SDN/NFV-empowered future IoV with enhanced communication, computing, and caching,” Proc. IEEE, vol. 108, no. 2, pp. 274–291, Feb. 2020. doi: 10.1109/JPROC.2019.2951169
    [97]
    X. J. Wang, Z. L. Ning, M. C. Zhou, X. P. Hu, L. Wang, Y. Zhang, F. R. Yu, and B. Hu, “Privacy-preserving content dissemination for vehicular social networks: Challenges and solutions,” IEEE Commun. Surv. Tut., vol. 21, no. 2, pp. 1314–1345, 2019. doi: 10.1109/COMST.2018.2882064
    [98]
    X. J. Wang, Z. L. Ning, M. C. Zhou, X. P. Hu, L. Wang, B. Hu, R. Y. K. Kwok, and Y. Guo, “A privacy-preserving message forwarding framework for opportunistic cloud of things,” IEEE Internet Things J., vol. 5, no. 6, pp. 5281–5295, Dec. 2018. doi: 10.1109/JIOT.2018.2864782
    [99]
    N. Magaia, C. Borrego, P. Pereira, and M. Correia, “PRIVO: A privacy-preserving opportunistic routing protocol for delay tolerant networks,” in Proc. IFIP Networking Conf. and Workshops, Stockholm, Sweden, 2017, pp. 1–9.
    [100]
    N. Magaia, C. Borrego, P. R. Pereira, and M. Correia, “EPRIVO: An enhanced PRIvacy-preserving opportunistic routing protocol for vehicular delay-tolerant networks,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11154–11168, Nov. 2018. doi: 10.1109/TVT.2018.2870113
    [101]
    J. A. Blackley, J. Peltier, and T. R. Peltier, Information Security Fundamentals, New York: Auerbach, 2004.
    [102]
    N. Magaia, P. Rogério Pereira, and M. P. Correia, “Security in delay-tolerant mobile cyber physical applications,” in Cyber-Physical Systems: From Theory to Practice, D. B. Rawat, J. J. P. C. Rodrigues, and I. Stojmenovic, Eds. CRC Press, 2015, pp. 373–394.
    [103]
    H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, “VANet security challenges and solutions: A survey,” Veh. Commun., vol. 7, pp. 7–20, Jan. 2017.
    [104]
    N. Sharma, N. Chauhan, and N. Chand, “Security challenges in internet of vehicles (IoV) environment,” in Proc. 1st Int. Conf. Secure Cyber Computing and Communication, Jalandhar, India, 2018, pp. 203–207.
    [105]
    S. Singh, Y. S. Jeong, and J. H. Park, “A survey on cloud computing security: Issues, threats, and solutions,” J. Netw. Comput. Appl., vol. 75, pp. 200–222, Nov. 2016. doi: 10.1016/j.jnca.2016.09.002
    [106]
    D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, Mar. 2012. doi: 10.1016/j.future.2010.12.006
    [107]
    M. A. Muller, I. Grundy, and J. Morsy, “An analysis of the cloud computing security problem,” Int. Surg., vol. 47, no. 3, pp. 288–290, 2014.
    [108]
    V. Chang and M. Ramachandran, “Towards achieving data security with the cloud computing adoption framework,” IEEE Trans. Serv. Comput., vol. 9, no. 1, pp. 138–151, Jan.–Feb. 2016. doi: 10.1109/TSC.2015.2491281
    [109]
    M. Farhadi, J. L. Lanet, G. Pierre, and D. Miorandi, “A systematic approach toward security in Fog computing: Assets, vulnerabilities, possible countermeasures,” Softw.:Pract. Exp., vol. 50, no. 6, pp. 973–997, Jun. 2020. doi: 10.1002/spe.2804
    [110]
    S. Parikh, D. Dave, R. Patel, and N. Doshi, “Security and privacy issues in cloud, fog and edge computing,” Procedia Comput. Sci., vol. 160, pp. 734–739, Jan. 2019. doi: 10.1016/j.procs.2019.11.018
    [111]
    H. Noura, O. Salman, A. Chehab, and R. Couturier, “Preserving data security in distributed fog computing,” Ad Hoc Netw., vol. 94, no. 101937, Nov. 2019.
    [112]
    D. Puthal, S. P. Mohanty, S. A. Bhavake, G. Morgan, and R. Ranjan, “Fog computing security challenges and future directions [Energy and Security],” IEEE Consum. Electron. Mag., vol. 8, no. 3, pp. 92–96, May 2019. doi: 10.1109/MCE.2019.2893674
    [113]
    P. Y. Zhang, M. C. Zhou, and G. Fortino, “Security and trust issues in Fog computing: A survey,” Future Gener. Comput. Syst., vol. 88, pp. 16–27, Nov. 2018. doi: 10.1016/j.future.2018.05.008
    [114]
    R. Crook, D. Ince, L. C. Lin, and B. Nuseibeh, “Security requirements engineering: When anti-requirements hit the fan,” in Proc. IEEE Int. Conf. Requirements Engineering, Essen, Germany, 2002, pp. 203–205.
    [115]
    B. Duncan, M. Whittington, and V. Chang, “Enterprise security and privacy: Why adding IoT and big data makes it so much more difficult,” in Proc. Int. Conf. Engineering and Technology, Antalya, Turkey, 2017, pp. 1–7.
    [116]
    M. Hossain, R. Hasan, and S. Zawoad, “Trust-IoV: A trustworthy forensic investigation framework for the internet of vehicles (IoV),” in Proc. IEEE Int. Congr. Internet of Things, Honolulu, USA, 2017, pp. 25–32.
    [117]
    S. Sharma and A. Kaul, “A survey on intrusion detection systems and honeypot based proactive security mechanisms in VANETs and VANET cloud,” Veh. Commun., vol. 12, pp. 138–164, Apr. 2018.
    [118]
    S. Sharma and B. Kaushik, “A survey on internet of vehicles: Applications, security issues & solutions,” Veh. Commun., vol. 20, no. 100182, Dec. 2019.
    [119]
    M. Bousselham, N. Benamar, and A. Addaim, “A new security mechanism for vehicular cloud computing using fog computing system,” in Proc. Int. Conf. Wireless Technologies, Embedded and Intelligent Systems, Fez, Morocco, 2019, pp. 1–4.
    [120]
    S. K. Erskine and K. M. Elleithy, “Secure intelligent vehicular network using fog computing,” Electronics, vol. 8, no. 4, pp. 455, Apr. 2019. doi: 10.3390/electronics8040455
    [121]
    R. Hussain and H. Oh, “Cooperation-aware VANET clouds: Providing secure cloud services to vehicular Ad Hoc networks,” J. Inf. Process. Syst., vol. 10, no. 1, pp. 103–118, Mar. 2014. doi: 10.3745/JIPS.2014.10.1.103
    [122]
    R. Hussain, F. Hussain, and S. Zeadally, “Integration of VANET and 5G security: A review of design and implementation issues,” Future Gener. Comput. Syst., vol. 101, pp. 843–864, Dec. 2019. doi: 10.1016/j.future.2019.07.006
    [123]
    K. P. Xue, J. N. Hong, Y. J. Ma, D. S. L. Wei, P. L. Hong, and N. H. Yu, “Fog-aided verifiable privacy preserving access control for latency-sensitive data sharing in vehicular cloud computing,” IEEE Netw., vol. 32, no. 3, pp. 7–13, May–Jun. 2018. doi: 10.1109/MNET.2018.1700341
    [124]
    W. S. Wiggins, “The challenge of the computer,” JAMA, vol. 188, no. 10, pp. 928–929, Jun. 1964. doi: 10.1001/jama.1964.03060360088018
    [125]
    M. Armbrust, A. Fox, and R. Griffith, “Above the clouds: A Berkeley view of cloud computing,” Univ. California, Berkeley, Tech. Rep. UCB, pp. 07–013, 2009, DOI: 10.1145/1721654.1721672.
    [126]
    Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,” in Proc. IEEE Int. Conf. Pervasive Computing and Communications Workshops, Kona, USA, 2017, pp. 6–9.
    [127]
    R. Masoudi and A. Ghaffari, “Software defined networks: A survey,” J. Netw. Comput. Appl., vol. 67, pp. 1–25, May 2016. doi: 10.1016/j.jnca.2016.03.016
    [128]
    S. K. Routray and S. Mohanty, “Why 6G?: Motivation and expectations of next- generation cellular networks,” arXiv preprint arXiv: 1903.04837, Mar. 2019.
    [129]
    H. T. Yuan, J. Bi, M. C. Zhou, and K. Sedraoui, “WARM: Workload-aware multi-application task scheduling for revenue maximization in SDN-based cloud data center,” IEEE Acc., vol. 6, pp. 645–657, Nov. 2017.
    [130]
    J. Gao, K. O. B. O. Agyekum, E. B. Sifah, K. N. Acheampong, Q. Xia, X. J. Du, M. Guizani, and H. Xia, “A blockchain-SDN-enabled internet of vehicles environment for fog computing and 5G networks,” IEEE Internet Things J., vol. 7, no. 5, pp. 4278–4291, May 2020. doi: 10.1109/JIOT.2019.2956241
    [131]
    T. Y. Huang, W. Yang, J. Wu, J. Ma, X. F. Zhang, and D. Y. Zhang, “A survey on green 6G network: Architecture and technologies,” IEEE Acc., vol. 7, pp. 175758–175768, Dec. 2019. doi: 10.1109/ACCESS.2019.2957648
    [132]
    K. B. Letaief, W. Chen, Y. M. Shi, J. Zhang, and Y. J. A. Zhang, “The roadmap to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, Aug. 2019. doi: 10.1109/MCOM.2019.1900271
    [133]
    C. Zhu, V. C. M. Leung, L. Shu, and E. C.-H. Ngai, “Green internet of things for smart world,” IEEE Access, vol. 3, pp. 2151–2162, 2015. doi: 10.1109/ACCESS.2015.2497312
    [134]
    F. Al-Turjman, A. Kamal, M. Husain Rehmani, A. Radwan, and A. S. Khan Pathan, “The green internet of things (G-IoT),” Wirel. Commun. Mob. Comput., vol. 2019, pp. 6059343, Jan. 2019.
    [135]
    K. Muhammad, J. Lloret, and S. W. Baik, “Intelligent and energy-efficient data prioritization in green smart cities: Current challenges and future directions,” IEEE Commun. Mag., vol. 57, no. 2, pp. 60–65, Feb. 2019. doi: 10.1109/MCOM.2018.1800371
    [136]
    E. Jonas, J. Schleier-Smith, V. Sreekanti, C. C. Tsai, A. Khandelwal, Q. F. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud programming simplified: A Berkeley view on serverless computing,” arXiv preprint arXiv: 1902.03383, Feb. 2019.
    [137]
    M. Masdari and M. Zangakani, “Green cloud computing using proactive virtual machine placement: Challenges and issues,” J. Grid Comput., DOI: 10.1007/s10723-019-09489-9:1902.03383
    [138]
    S. Iqbal, A. Haque, and M. Zulkernine, “Towards a security architecture for protecting connected vehicles from malware,” in Proc. 89th IEEE Vehicular Technology Conf., Kuala Lumpur, Malaysia, 2019.
    [139]
    L. S. Nie, Z. L. Ning, X. J. Wang, X. P. Hu, Y. K. Li, and J. Cheng, “Data-driven intrusion detection for intelligent internet of vehicles: A deep convolutional neural network-based method,” IEEE Trans. Netw. Sci. Eng., DOI: 10.1109/TNSE.2020.2990984
    [140]
    Y. Zeng, M. K. Qiu, D. Zhu, Z. H. Xue, J. Xiong, and M. Q. Liu, “DeepVCM: A deep learning based intrusion detection method in VANET,” in Proc. 5th IEEE Int. Conf. Big Data Security on Cloud, IEEE Int. Conf. High Performance and Smart Computing, and IEEE Int. Conf. Intelligent Data and Security, Washington, USA, 2019, pp. 288–293.
    [141]
    H. R. Liang, J. Wu, S. Mumtaz, J. H. Li, X. Lin, and M. W. Wen, “MBID: Micro-blockchain-based geographical dynamic intrusion detection for V2X,” IEEE Commun. Mag., vol. 57, no. 10, pp. 77–83, Oct. 2019. doi: 10.1109/MCOM.001.1900143
    [142]
    M. Aloqaily, S. Otoum, I. Al Ridhawi, and Y. Jararweh, “An intrusion detection system for connected vehicles in smart cities,” Ad Hoc Netw., vol. 90, no. 101842, Jul. 2019.
    [143]
    L. M. Wang and X. L. Liu, “NOTSA: Novel OBU with three-level security architecture for internet of vehicles,” IEEE Internet Things J., vol. 5, no. 5, pp. 3548–3558, Oct. 2018. doi: 10.1109/JIOT.2018.2800281
    [144]
    A. Yadav, G. Bose, R. Bhange, K. Kapoor, N. C. S. N. Iyengar, and R. D. Caytiles, “Security, vulnerability and protection of vehicular on-board diagnostics,” Int. J. Secur. Its Appl., vol. 10, no. 4, pp. 405–422, Apr. 2016.
    [145]
    Z. W. Guo, Y. Shen, A. K. Bashir, M. Imran, N. Kumar, D. Zhang, and K. P. Yu, “Robust spammer detection using collaborative neural network in internet of thing applications,” IEEE Internet Things J., DOI: 10.1109/JIOT.2020.3003802
    [146]
    L. Zhang, X. Y. Meng, K. K. R. Choo, Y. F. Zhang, and F. F. Dai, “Privacy-preserving cloud establishment and data dissemination scheme for vehicular cloud,” IEEE Trans. Dependable Secur. Comput., vol. 17, no. 3, pp. 634–647, Jun. 2020.
    [147]
    Z. H. Tian, X. S. Gao, S. Su, J. Qiu, X. J. Du, and M. Guizani, “Evaluating reputation management schemes of internet of vehicles based on evolutionary game theory,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5971–5980, Jun. 2019. doi: 10.1109/TVT.2019.2910217
    [148]
    K. Gu, X. Y. Dong, and W. J. Jia, “Malicious node detection scheme based on correlation of data and network topology in fog computing-based VANETs,” IEEE Trans. Cloud Comput., DOI: 10.1109/TCC.2020.2985050
    [149]
    K. Zaidi, M. B. Milojevic, V. Rakocevic, A. Nallanathan, and M. Rajarajan, “Host-based intrusion detection for VANETs: A statistical approach to rogue node detection,” IEEE Trans. Veh. Technol., vol. 65, no. 8, pp. 6703–6714, Aug. 2016. doi: 10.1109/TVT.2015.2480244
    [150]
    B. Al-Otaibi, N. Al-Nabhan, and Y. Tian, “Privacy-preserving vehicular rogue node detection scheme for fog computing,” Sensors, vol. 19, no. 4, pp. 965, Feb. 2019. doi: 10.3390/s19040965
    [151]
    K. N. Tripathi and S. C. Sharma, “A trust based model (TBM) to detect rogue nodes in vehicular ad-hoc networks (VANETS),” Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 2, pp. 426–440, Apr. 2020. doi: 10.1007/s13198-019-00871-0
    [152]
    M. Alshehri and B. Panda, “Minimizing data breach by a malicious fog node within a fog federation,” in Proc. 7th IEEE Int. Conf. Cyber Security and Cloud Computing/6th IEEE Int. Conf. Edge Computing and Scalable Cloud, New York, USA, 2020, pp. 36–43.
    [153]
    R. Kolandaisamy, R. Md Noor, I. Ahmedy, I. Ahmad, M. R. Z’aba, M. Imran, and M. Alnuem, “A multivariant stream analysis approach to detect and mitigate DDoS attacks in vehicular Ad Hoc networks,” Wirel. Commun. Mob. Comput., vol. 2018, no. 2874509, May 2018.
    [154]
    A. Haydari and Y. Yilmaz, “Real-time detection and mitigation of DDoS attacks in intelligent transportation systems,” in Proc. 21st IEEE Int. Conf. Intelligent Transportation Systems, Maui, USA, 2018, pp. 157–163.
    [155]
    Q. Shafi and A. Basit, “DDoS botnet prevention using blockchain in software defined internet of things,” in Proc. 16th Bhurban Conf. Applied Sciences and Technology, Islamabad, Pakistan, 2019, pp. 624–628.
    [156]
    K. Adhikary, S. Bhushan, S. Kumar, and K. Dutta, “Hybrid algorithm to detect DDoS attacks in VANETs,” Wirel. Pers. Commun., 2020.
    [157]
    H. H. R. Sherazi, R. Iqbal, F. Ahmad, Z. A. Khan, and M. H. Chaudary, “DDoS attack detection: A key enabler for sustainable communication in internet of vehicles,” Sustain. Comput. Informatics Syst., vol. 23, pp. 13–20, Sep. 2019. doi: 10.1016/j.suscom.2019.05.002
    [158]
    Y. Yu, L. Guo, Y. Liu, J. Zheng, and Y. Zong, “An efficient SDN-based DDoS attack detection and rapid response platform in vehicular networks,” IEEE Acc., vol. 6, pp. 44570–44579, Jul. 2018. doi: 10.1109/ACCESS.2018.2854567
    [159]
    A. M. Alrehan and F. A. Alhaidari, “Machine learning techniques to detect DDoS attacks on VANET system: A survey,” in Proc. 2nd Int. Conf. Computer Applications & Information Security, Riyadh, Saudi Arabia, 2019.
    [160]
    R. Hussain, H. Oh, and S. Kim, “Antisybil: Standing against sybil attacks in privacy-preserved VANET,” in Proc. Int. Conf. Connected Vehicles and Expo, Beijing, China, 2012, pp. 108–113.
    [161]
    J. W. Liu, Q. Q. Li, R. Sun, X. J. Du, and M. Guizani, “An efficient anonymous authentication scheme for internet of vehicles,” in Proc. IEEE Int. Conf. Communications, Kansas City, USA, 2018, pp. 1–6.
    [162]
    J. N. Wei, X. J. Wang, N. Li, G. M. Yang, and Y. Mu, “A privacy-preserving fog computing framework for vehicular crowdsensing networks,” IEEE Acc., vol. 6, pp. 43776–43784, Jul. 2018. doi: 10.1109/ACCESS.2018.2861430
    [163]
    M. A. Saleem, K. Mahmood, and S. Kumari, “Comments on “AKM-IoV: Authenticated key management protocol in fog computing-based internet of vehicles deployment”,” IEEE Internet Things J., vol. 7, no. 5, pp. 4671–4675, May 2020. doi: 10.1109/JIOT.2020.2975207
    [164]
    R. Jabbar, M. Kharbeche, K. Al-Khalifa, M. Krichen, and K. Barkaoui, “Blockchain for the internet of vehicles: A decentralized IoT solution for vehicles communication using ethereum,” Sensors, vol. 20, no. 14, pp. 3928, Jul. 2020. doi: 10.3390/s20143928

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views (1989) PDF downloads(66) Cited by()

    Highlights

    • Give an overview of the intersection between computing paradigms and emerging vehicular environments.
    • Emphasize key security issues that are linked to the characteristics of each topic.
    • Highlight that both topics complement each other and share problems and limitations.
    • Present a vision and expectation of what is considered reasonable for their future materialization.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return