A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 3
Apr.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Jianchao Luo, Zhiqiang Liu, Shuogang Wang and Keyi Xing, "Robust Deadlock Avoidance Policy for Automated Manufacturing System With Multiple Unreliable Resources," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 812-821, May 2020. doi: 10.1109/JAS.2020.1003096
Citation: Jianchao Luo, Zhiqiang Liu, Shuogang Wang and Keyi Xing, "Robust Deadlock Avoidance Policy for Automated Manufacturing System With Multiple Unreliable Resources," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 812-821, May 2020. doi: 10.1109/JAS.2020.1003096

Robust Deadlock Avoidance Policy for Automated Manufacturing System With Multiple Unreliable Resources

doi: 10.1109/JAS.2020.1003096
Funds:  This work was supported in part by the Fundamental Research Funds for the Central Universities (3102017OQD110), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ-435), the Project Funded by China Postdoctoral Science Foundation (2019M663818), the National Key Research and Development Program of China (2019YFB1703800), Guangdong Basic and Applied Basic Research Foundation (2019A1515111076), and the National Natural Science Foundation of China (71931007)
More Information
  • This work studies the robust deadlock control of automated manufacturing systems with multiple unreliable resources. Our goal is to ensure the continuous production of the jobs that only require reliable resources. To reach this goal, we propose a new modified Banker’s algorithm (MBA) to ensure that all resources required by these jobs can be freed. Moreover, a Petri net based deadlock avoidance policy (DAP) is introduced to ensure that all jobs remaining in the system after executing the new MBA can complete their processing smoothly when their required unreliable resources are operational. The new MBA together with the DAP forms a new DAP that is robust to the failures of unreliable resources. Owing to the high permissiveness of the new MBA and the optimality of the DAP, it is tested to be more permissive than state-of-the-art control policies.

     

  • loading
  • [1]
    Y. F. Chen and Z. W. Li, “Design of a maximally permissive liveness-enforcing supervisor with a compressed supervisory structure for flexible manufacturing systems,” Automatica, vol. 47, no. 5, pp. 1028–1034, Mar. 2011. doi: 10.1016/j.automatica.2011.01.070
    [2]
    Y. F. Chen, Z. W. Li, and M. C. Zhou, “Behaviorally optimal and structurally simple liveness-enforcing supervisors of flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 42, no. 42, pp. 615–629, May 2012.
    [3]
    J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock prevention policy for flexible manufacturing systems,” IEEE Trans. Robot. Autom., vol. 11, no. 2, pp. 173–184, Apr. 1995. doi: 10.1109/70.370500
    [4]
    M. P. Fanti and M. C. Zhou, “Deadlock control methods in automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 34, no. 1, pp. 5–22, Jan. 2004. doi: 10.1109/TSMCA.2003.820590
    [5]
    H. S. Hu, M. C. Zhou, Z. W. Li, and Y. Tang, “Deadlock-free control of ams with flexible routes and assembly operations using Petri nets,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 109–121, Feb. 2013. doi: 10.1109/TII.2012.2198661
    [6]
    H. S. Hu and M. C. Zhou, “A Petri net-based discrete event control of automated manufacturing systems with assembly operations,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 513–524, Mar. 2015. doi: 10.1109/TCST.2014.2342664
    [7]
    Z. W. Li, G. Liu, H. Hanisch, and M. C. Zhou, “Deadlock prevention based on structure reuse of Petri net supervisors for flexible manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 42, no. 1, pp. 178–191, Jan. 2012. doi: 10.1109/TSMCA.2011.2147308
    [8]
    H. X. Liu, K. Y. Xing, M. C. Zhou, L. B. Han, and F. Wang, “Transition cover-based design of Petri net controllers for automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 44, no. 2, pp. 196–208, Feb. 2014. doi: 10.1109/TSMC.2013.2238923
    [9]
    H. X. Liu, W. Wu, H. Su, and Z. Zhang, “Design of optimal Petri net controllers for a class of flexible manufacturing systems with key resources,” Inform. Sciences, vol. 363, pp. 221–234, Oct. 2016. doi: 10.1016/j.ins.2015.11.021
    [10]
    G. Y. Liu and K. Barkaoui, “Necessary and sufficient liveness condition of GS3PR Petri nets,” Int. J. Syst. Science, vol. 46, no. 7, pp. 1147–1160, May 2015. doi: 10.1080/00207721.2013.827257
    [11]
    G. Y. Liu and D. Y. Chao, “Further reduction of minimal first-met bad markings for the computationally efficient synthesis of a maximally permissive controller,” Int. J. Control, vol. 88, no. 8, pp. 1–6, Aug. 2015.
    [12]
    J. C. Luo, Z. Q. Liu, and M. C. Zhou, “A Petri net-based deadlock avoidance policy for flexible manufacturing systems with assembly operations and multiple resource acquisition,” IEEE Trans. Ind. Inform., vol. 15, no. 6, pp. 3379–3387, Jun. 2019. doi: 10.1109/TII.2018.2876343
    [13]
    L. Piroddi, R. Cordone, and I. Fumagalli, “Selective siphon control for deadlock prevention in Petri nets,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 38, no. 6, pp. 1337–1348, Nov. 2008. doi: 10.1109/TSMCA.2008.2003535
    [14]
    N. Q. Wu, M. C. Zhou, and G. Hu, “Petri net modeling and one-step look-ahead maximally permissive deadlock control of automated manufacturing systems,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 1, pp. 1–10, Jan. 2013.
    [15]
    N. Q. Wu, M. C. Zhou, and Z. W. Li, “Resource-oriented Petri net for deadlock avoidance in flexible assembly systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 38, no. 1, pp. 56–69, Jan. 2008. doi: 10.1109/TSMCA.2007.909542
    [16]
    K. Y. Xing, M. C. Zhou, H. X. Liu, and F. Tian, “Optimal Petri-net-based polynomial-complexity deadlock avoidance policies for automated manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 39, no. 1, pp. 188–199, Jan. 2009. doi: 10.1109/TSMCA.2008.2007947
    [17]
    K. Y. Xing, F. Wang, M. C. Zhou, H. Lei, and J. C. Luo, “Deadlock characterization and control of flexible assembly systems with Petri nets,” Automatica, vol. 87, pp. 358–364, Jan. 2018. doi: 10.1016/j.automatica.2017.09.001
    [18]
    S. F. Chew and M. A. Lawley, “Robust supervisory control for production systems with multiple resource failures,” IEEE Trans. Autom. Sci. Eng., vol. 3, pp. 309–323, Jul. 2006. doi: 10.1109/TASE.2005.861397
    [19]
    S. F. Chew, S. Wang, and M. A. Lawley, “Robust supervisory control for product routings with multiple unreliable resources,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp. 195–200, Jan. 2009. doi: 10.1109/TASE.2008.917142
    [20]
    S. F. Chew, S. Y. Wang, and M. A. Lawley, “Resource failure and blockage control for production systems,” Int. J. Comput. Integ. M., vol. 24, no. 3, pp. 229–241, 2011. doi: 10.1080/0951192X.2011.552526
    [21]
    F. Hsieh, “Fault-tolerant deadlock avoidance algorithm for assembly processes,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 34, no. 1, pp. 65–79, Jan. 2004. doi: 10.1109/TSMCA.2003.820574
    [22]
    F. Hsieh, “Analysis of flexible assembly processes based on structural decomposition of Petri nets,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 37, no. 5, pp. 792–803, Sep. 2007. doi: 10.1109/TSMCA.2007.902651
    [23]
    M. A. Lawley, “Control of deadlock and blocking for production systems with unreliable workstations,” Int. J. Prod. Res., vol. 40, no. 17, pp. 4563–4582, Nov. 2002. doi: 10.1080/00207540210155792
    [24]
    M. A. Lawley and W. Sulistyono, “Robust supervisory control policies for manufacturing systems with unreliable resources,” IEEE Trans. Robot. Autom., vol. 18, no. 3, pp. 346–359, 2002. doi: 10.1109/TRA.2002.1019464
    [25]
    G. Y. Liu, P. Li, Z. W. Li, and N. Q. Wu, “Robust deadlock control for automated manufacturing systems with unreliable resources based on Petri net reachability graphs,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 49, no. 7, pp. 1371–1385, 2018.
    [26]
    G. Y. Liu, P. Li, N. Q. Wu, and L. Yin, “Two step approach to robust deadlock control in automated manufacturing systems with multiple resource failures,” J. Chin. Inst. Eng., vol. 41, no. 4, pp. 484–494, Oct. 2018.
    [27]
    G. Y. Liu, Z. W. Li, K. Barkaoui, and A. M. Al-Ahmari, “Robustness of deadlock control for a class of Petri nets with unreliable resources,” Inform. Sciences, vol. 235, no. 6, pp. 259–279, 2013.
    [28]
    J. C. Luo, K. Y. Xing, and Y. C. Wu, “Robust supervisory control policy for automated manufacturing systems with a single unreliable resource,” Trans. I. Meas. Control, vol. 39, no. 6, pp. 793–806, Jun. 2017. doi: 10.1177/0142331216656755
    [29]
    J. C. Luo, K. Y. Xing, and M. C. Zhou, “Deadlock and blockage control of automated manufacturing systems with an unreliable resource,” Asian J. Control, vol. 21, no. 6, pp. 1–12, Nov. 2018.
    [30]
    J. C. Luo, Z. Q. Liu, M. C. Zhou, K. Y. Xing, X. N. Wang, X. L. Li, and H. X. Liu, “Robust deadlock control of automated manufacturing systems with multiple unreliable resources,” Inform. Sciences, vol. 479, pp. 401–415, Apr. 2019. doi: 10.1016/j.ins.2018.11.051
    [31]
    S. Y. Wang, S. F. Chew, and M. A. Lawley, “Using shared-resource capacity for robust control of failure-prone manufacturing systems,” IEEE Trans. Syst.,Man,Cybern.,A,Syst.,Humans, vol. 38, no. 3, pp. 605–627, May 2008. doi: 10.1109/TSMCA.2008.918616
    [32]
    F. Wang, K. Y. Xing, M. C. Zhou, X. P. Xu, and L. B. Han, “A robust deadlock prevention control for automated manufacturing systems with unreliable resources,” Inform. Sciences, vol. 345, pp. 243–256, Jun. 2016. doi: 10.1016/j.ins.2016.01.057
    [33]
    Y. C. Wu, K. Y. Xing, J. C. Luo, and Y. X. Feng, “Robust deadlock control for automated manufacturing systems with an unreliable resource,” Inform. Sciences, vol. 346, pp. 17–28, Jun. 2016.
    [34]
    H. Yue, K. Y. Xing, and Z. Hu, “Robust supervisory control policy for avoiding deadlock in automated manufacturing systems with unreliable resources,” Int. J. Prod. Res., vol. 52, no. 6, pp. 1573–1591, Mar. 2014. doi: 10.1080/00207543.2013.807375
    [35]
    H. Yue, K. Y. Xing, H. S. Hu, W. M. Wu, and H. Y. Su, “Resource failure and buffer space allocation control for automated manufacturing systems,” Inform. Sciences, vol. 450, pp. 392–408, Jun. 2018. doi: 10.1016/j.ins.2018.02.043
    [36]
    H. Yue and K. Y. Xing, “Robust supervisory control for avoiding deadlocks in automated manufacturing systems with one specified unreliable resource,” Trans. I. Meas. Control, vol. 36, no. 4, pp. 435–444, Jun. 2014. doi: 10.1177/0142331213495884
    [37]
    L. P. Bai, N. Q. Wu, Z. W. Li, and M. C. Zhou, “Optimal one-wafer cyclic scheduling and buffer space configuration for single-arm multicluster tools with linear topology,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 46, no. 10, pp. 1456–1467, Oct. 2016. doi: 10.1109/TSMC.2015.2501232
    [38]
    F. J. Yang, N. Q. Wu, Y. Qao, M. C. Zhou, and Z. W. Li, “Scheduling of single arm cluster tools for anatomic layer deposition process with residency time constraints,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 47, no. 3, pp. 502–516, Mar. 2017. doi: 10.1109/TSMC.2015.2507140
    [39]
    X. Lu, M. C. Zhou, A. C. Ammari, and J. Ji, “Hybrid Petri nets for modeling and analysis of microgrid systems,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 347–354, Oct. 2016.
    [40]
    J. C. Luo, Z. Q. Liu, M. C. Zhou, and K. Y. Xing, “Deadlock-free scheduling of flexible assembly systems based on Petri nets and local search,” IEEE Trans. Syst.,Man,Cybern.,Syst, 2018. doi: 10.1109/TSMC.2018.2855685,2018
    [41]
    T. Murata, “Petri nets: properties, analysis and applications,” Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989. doi: 10.1109/5.24143
    [42]
    Y. Qiao, N. Q. Wu, F. J. Yang, M. C. Zhou, and Q. H. Zhu, “Wafer sojourn time fluctuation analysis of time-constrained dual-arm cluster tools with wafer revisiting and activity time variation,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 4, pp. 622–636, Apr. 2018. doi: 10.1109/TSMC.2016.2600583
    [43]
    N. Ran, H. Su, and S. Wang, “An improved approach to test diagnosability of bounded Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 297–303, 2017. doi: 10.1109/JAS.2017.7510406
    [44]
    N. Q. Wu and M. C. Zhou, “Modeling, analysis and control of dual arm cluster tools with residency time constraint and activity time variation based on Petri nets,” IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2, pp. 446–454, Apr. 2012. doi: 10.1109/TASE.2011.2178023
    [45]
    N. Q. Wu, M. C. Zhou, and Z. W. Li, “Short term scheduling of crude oil operations: Petri net based control theoretic approach,” IEEE Trans. Robot. Autom. Mag., vol. 22, no. 2, pp. 64–76, Jun. 2015. doi: 10.1109/MRA.2015.2415047
    [46]
    F. J. Yang, N. Q. Wu, Y. Qiao, and R. Su, “Polynomial approach to optimal one-wafer cyclic scheduling of treelike hybrid multi-cluster tools via Petri nets,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 270–280, 2018. doi: 10.1109/JAS.2017.7510772
    [47]
    S. W. Zhang, N. Q. Wu, Z. W. Li, T. Qu, and C. D. Li, “Petri net based approach to short term scheduling of crude oil operations with less tank requirement,” Inform. Sciences, vol. 417, pp. 247–261, Nov. 2017. doi: 10.1016/j.ins.2017.07.009
    [48]
    M. C. Zhou and M. P. Fanti, Deadlock Resolution in Computer-Integrated System, New York, NY, USA: Marcel Dekker, 2005.
    [49]
    Q. H. Zhu, M. C. Zhou, Y. Qiao, and N. Q. Wu, “Petri net modeling and scheduling of a close down process for time-constrained single-arm cluster tools,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 48, no. 3, pp. 389–400, Mar. 2018. doi: 10.1109/TSMC.2016.2598303

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1292) PDF downloads(54) Cited by()

    Highlights

    • We study the robust deadlock control of AMSs where resources are workstations and unreliable resources may fail when they are working or idle for the first time.
    • A new MBA is proposed, which is proved to be more permissive than the existing version. The proposed MBA can be integrated with any DAP for S3PR, which eventually leads to improved performance of our control policy if a better DAP for S3PR is proposed.
    • The proposed robust DAP exhibits higher permissiveness than existing ones for systems with multiple unreliable resources and those with a single one.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return