A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Daniel Herrera, Flavio Roberti, Marcos Toibero and Ricardo Carelli, "Human Interaction Dynamics for Its Use in Mobile Robotics: Impedance Control for Leader-follower Formation," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 696-703, Oct. 2017. doi: 10.1109/JAS.2017.7510631
Citation: Daniel Herrera, Flavio Roberti, Marcos Toibero and Ricardo Carelli, "Human Interaction Dynamics for Its Use in Mobile Robotics: Impedance Control for Leader-follower Formation," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 696-703, Oct. 2017. doi: 10.1109/JAS.2017.7510631

Human Interaction Dynamics for Its Use in Mobile Robotics:Impedance Control for Leader-follower Formation

doi: 10.1109/JAS.2017.7510631
More Information
  • A complete characterization of the behavior in human-robot interactions (HRI) includes both:the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields. As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities:least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure. Finally, with the best fictitious force and its identified impedance, an impedance control is designed for a mobile robot Pioneer 3AT, which is programmed to follow a human in a structured scenario. According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.

     

  • loading
  • [1]
    E. T. Hall, "A system for the notation of proxemic behavior, " Am. Anthropolog. , vol. 65, no. 5, pp. 1003-1026, Oct. 1963.
    [2]
    J. Rios-Martinez, A. Spalanzani, and C. Laugier, "From proxemics theory to socially-aware navigation: A survey, " Int. J. Soc. Robot. , vol. 7, no. 2, pp. 137-153, Apr. 2015. doi: 10.1007/s12369-014-0251-1
    [3]
    C. P. Lam, C. T. Chou, K. H. Chiang, and L. C. Fu, "Human-centered robot navigation-towards a harmoniously human-robot coexisting environment, " IEEE Trans. Robot. , vol. 27, no. 1, pp. 99-112, Feb. 2011. http://dl.acm.org/citation.cfm?id=2212250
    [4]
    L. Scandolo and T. Fraichard, "An anthropomorphic navigation scheme for dynamic scenarios, " in Proc. 2011 IEEE Int. Conf. Robotics and Automation, Shanghai, China, 2011, pp. 809-814. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5979772
    [5]
    J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A. Di Caro, "Human-friendly robot navigation in dynamic environments, " in Proc. 2013 IEEE Int. Conf. Robotics and Automation, Karlsruhe, 2013, pp. 423-430. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6630610
    [6]
    P. Ratsamee, Y. Mae, K. Ohara, M. Kojima, and T. Arai, "Social navigation model based on human intention analysis using face orientation, " in Proc. 2013 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 1682-1687. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6696575
    [7]
    K. W. Rio, C. K. Rhea, and W. H. Warren, "Follow the leader: Visual control of speed in pedestrian following, " J. Vision, vol. 14, no. 2, p. 4, Feb. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24511143
    [8]
    G. C. Dachner and W. H. Warren, "Behavioral dynamics of heading alignment in pedestrian following, " Trans. Res. Procedia, vol. 2, pp. 69-76, Dec. 2014. http://www.sciencedirect.com/science/article/pii/S2352146514000465
    [9]
    T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, "Human-aware robot navigation: A survey, " Robot. Autonom. Syst. , vol. 61, no. 12, pp. 1726-1743, Dec. 2013. http://dl.acm.org/citation.cfm?id=2542686.2542722
    [10]
    D. Helbing and A. Johansson, Pedestrian, Crowd and Evacuation Dynamics. New York:Springer, 2009, pp.6476-6495.
    [11]
    A. Calanca, R. Muradore, and P. Fiorini, "A review of algorithms for compliant control of stiff and fixed-compliance robots, " IEEE/ASME Trans. Mechatron. , vol. 21, no. 2, pp. 613-624, Apr. 2016.
    [12]
    T. Tsumugiwa, R. Yokogawa, and K. Yoshida, "Stability analysis for impedance control of robot for human-robot cooperative task system, " in Proc. 2004 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Sendai, 2004, pp. 3883-3888. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1390020
    [13]
    J. Bae, J. Ko, and D. Hong, "Variable impedance control with stiffness for human-robot cooperation system, " in Proc. 15th Int. Conf. Control, Automation and Systems, Busan, 2015, pp. 1231-1233. http://ieeexplore.ieee.org/document/7364818/
    [14]
    V. Duchaine and C. M. Gosselin, "General model of human-robot cooperation using a novel velocity based variable impedance control, " in Proc. 2nd Joint EuroHaptics Conf. , 2007 and Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems, Tsukuba, Japan, 2007, pp. 446-451. https://www.computer.org/csdl/proceedings/whc/2007/2738/00/27380446-abs.html
    [15]
    F. Ficuciello, L. Villani, and B. Siciliano, "Redundancy resolution in human-robot co-manipulation with cartesian impedance control, " in Experimental Robotics, M. Ani Hsieh, O. Khatib, and V. Kumar, Eds. Switzerland: Springer International Publishing, 2016, pp. 165-176. doi: 10.1007/978-3-319-23778-7_12
    [16]
    R. Carelli, J. Santos-Victor, F. Roberti, and S. Tosetti, "Direct visual tracking control of remote cellular robots, " Robot. Autonom. Syst. , vol. 54, no. 10, pp. 805-814, Oct. 2006.
    [17]
    T. Tsuji, H. Akamatsu, and M. Kaneko, "Non-contact impedance control for redundant manipulators using visual information, " in Proc. 1997 IEEE Int. Conf. Robotics and Automation, Albuquerque, NM, USA, 1997, pp. 2571-2576. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=619348
    [18]
    S. Y. Lo, C. A. Cheng, and H. P. Huang, "Virtual impedance control for safe human-robot interaction, " J. Intell. Robot. Syst. , vol. 82, no. 1, pp. 3-19, Apr. 2016. doi: 10.1007/s10846-015-0250-y
    [19]
    D. Helbing and P. Molnár, "Social force model for pedestrian dynamics, " Phys. Rev. E, vol.51, no.5, pp.4282-4286, May1995. doi: 10.1103/PhysRevE.51.4282
    [20]
    W. -C. Yu and N. -Y. Shih, "Bi-loop recursive least squares algorithm with forgetting factors, " IEEE Signal Proc. Lett. , vol. 13, no. 8, pp. 505-508, Aug. 2006. http://ieeexplore.ieee.org/document/1658068/
    [21]
    P. R. Kalata, "The tracking index: A generalized parameter for α-β and α-β-γ target trackers, " IEEE Trans. Aerosp. Electron. Syst. , vol. AES-20, no. 2, pp. 174-182, Mar. 1984. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4103918
    [22]
    C. De la Cruz and R. Carelli, "Dynamic model based formation control and obstacle avoidance of multi-robot systems, " Robotica, vol.26, no.3, pp.345-356, May 2008. http://dl.acm.org/citation.cfm?id=1394736

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (1298) PDF downloads(106) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return