[1] L. O. Chua, " Memristor—the missing circuit element,” IEEE Trans. Circuit Theory, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.
[2] L. O. Chua and S. M. Kang, " Memristive devices and systems,” Proc. IEEE, vol. 64, no. 2, pp. 209–223, Feb. 1976. doi: 10.1109/PROC.1976.10092
[3] L. O. Chua, " Device modeling via basic nonlinear circuit elements,” IEEE Trans. Circuit Systems, vol. CAS-27, no. 11, pp. 1014–1044, Sep. 1980.
[4] L. O. Chua, " Nonlinear circuit foundations for nanodevices. I. The four-element torus,” Proc. IEEE, vol. 91, no. 11, pp. 1830–1859, Nov. 2003.
[5] L. O. Chua, " Resistance switching memories are memristors,” Applied Physics A, vol. 102, no. 4, pp. 765–783, 2011.
[6] L. O. Chua, " The fourth element,” Proc. IEEE, vol. 100, no. 6, pp. 1920–1927, Jun. 2012. doi: 10.1109/JPROC.2012.2190814
[7] T. Prodromakis, C. Toumazou, and L. O. Chua, " Two centuries of memristors,” Nature Materials, vol. 11, pp. 478–481, 2012. doi: 10.1038/nmat3338
[8] S. P. Adhikari, M. P. Sah, K. Hyongsuk, and L. O. Chua, " Three fingerprints of memristor,” IEEE Trans. Circuits and Systems, vol. 60, no. 11, pp. 3008–3021, Nov. 2013. doi: 10.1109/TCSI.2013.2256171
[9] D. B. Strukov, G. S. Snider, D. R. Stewart, and S. R. Williams, " The missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008. doi: 10.1038/nature06932
[10] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams, " ‘Memristive’ switches enable ‘stateful’ logic operations via material implication,” Nature, vol. 464, no. 7290, pp. 873–878, 2010. doi: 10.1038/nature08940
[11] I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, and R. Waser, " Nanobatteries in redox-based resistive switches require extension of memristor theory,” Nature Communications 4, pp. Article No: 1771, Nov. 2013.
[12] Y. F. Pu, " Measurement units and physical dimensions of fractance-part i: position of purely ideal fractor in Chua’s axiomatic circuit element system and fractional-order reactance of fractor in its natural implementation,” IEEE Access, vol. 4, pp. 3379–3397, 2016. doi: 10.1109/ACCESS.2016.2585818
[13] Y. F. Pu, " Measurement units and physical dimensions of fractance-part ii: fractional-order measurement units and physical dimensions of fractance and rules for fractors in series and parallel,” IEEE Access, vol. 4, pp. 3398–3416, 2016. doi: 10.1109/ACCESS.2016.2585819
[14] Y. F. Pu, and X. Yuan, " Fracmemristor: fractional-order memristor,” IEEE Access, vol. 4, pp. 1872–1888, 2016. doi: 10.1109/ACCESS.2016.2557818
[15] Y. F. Pu, X. Yuan, and B. Yu., " Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 65, no. 9, pp. 2903–2916, Sept. 2018. doi: 10.1109/TCSI.2018.2789907
[16] http://www.bioinspired.net/neuro-bit-memristors.html
[17] D. S. Yu, Y. Liang, H. Chen, and H. H. C. Iu, " Design of a versatile memcapacitor emulator without grounded restriction,” IEEE Trans. Circuits and Systems, vol. 60, no. 4, pp. 207–211, Apr. 2013. doi: 10.1109/TCSII.2013.2240879
[18] M. P. Sah, R. K. Budhathoki, C. Yang, and H. Kim, " Expandable circuits of mutator-based memcapacitor emulator,” Int. J. Bifurcation and Chaos, vol. 23, no. 5, pp. Article No: 1330017, 2013. doi: 10.1142/S0218127413300176
[19] B. C. Bao, J. P. Xu, G. H. Zhou, Z. H. Ma, and L. Zou, " Chaotic memristive circuit: equivalent circuit realization and dynamical analysis,” Chinese Physics B, vol. 20, no. 12, pp. Article No: 120502, 2011. doi: 10.1088/1674-1056/20/12/120502
[20] Z. Biolek, D. Biolek, and V. Biolkova, " Computation of the area of memristor pinched hysteresis loop,” IEEE Trans. Circuits and Systems II:Express Briefs, vol. 59, no. 9, pp. 607–611, Aug. 2012. doi: 10.1109/TCSII.2012.2208670