[1] D. Liberzon, Switching in Systems and Control, T. Basar, Ed. Bikhauser Boston, 2003.
[2] G. S. Deaecto, J. C. Geromel, F. S. Garcia, and J. A. Pomilio, “Switched affine systems control design with application to DC-DC converters,” IET Control Theory and Applications, vol. 4, no. 7, pp. 1201–1210, 2009.
[3] S. Baldi, A. Papachristodoulou, and E. B. Kosmatopoulos, “Adaptive pulse width modulation design for power converters based on affine switched systems,” Nonlinear Analysis:Hybrid Systems, vol. 30, pp. 306–322, 2018. doi: 10.1016/j.nahs.2018.07.002
[4] V. L. Yoshimora, E. Assuncao, E. R. P. da Silva, and M. C. M. Teixeira, “Observer-based control design for switched affine systems and applications to DC-DC converters,” Journal of Control,Automation and Electrical Systems, vol. 24, no. 4, pp. 535–543, 2013. doi: 10.1007/s40313-013-0044-z
[5] T. Wang, Y. Liu, X. Wang, and J. Li, “Robust sampling-based switching design for piecewise affine systems with application to DC-DC converters,” IET Control Theory &Applications, vol. 13, no. 9, pp. 1404–1412, 2019.
[6] C. Albea, G. Garcia, and L. Zaccarian, “Hybrid dynamic modeling and control of switched affine systems: Application to DC-DC converters,” in Proc. IEEE 54th Annual Conf. Decision and Control, Osaka, Japan, Dec. 2015, pp. 2264–2269.
[7] G. Beneux, P. Riedinger, J. Daafouz, and L. Grimaud, “Adaptive stabilization of switched affine systems with unknown equilibrium points: Application to power converters,” Automatica, vol. 99, pp. 82–91, 2019. doi: 10.1016/j.automatica.2018.10.015
[8] M. Hejri, A. Giua, and H. Mokhtari, “On the complexity and dynamical properties of mixed logical dynamical systems via an automaton-based realization of discrete-time hybrid automaton,” Int. Journal of Robust and Nonlinear Control, vol. 28, no. 16, pp. 4713–4746, 2018. doi: 10.1002/rnc.4278
[9] G. S. Deaecto and J. C. Geromel, “Stability analysis and control design of discrete-time switched affine systems,” IEEE Trans. Automatic Control, vol. 62, no. 8, pp. 4058–4065, Aug. 2017. doi: 10.1109/TAC.2016.2616722
[10] L. N. Egidio and G. S. Deaecto, “Novel practical stability conditions for discrete-time switched affine systems,” IEEE Trans. Automatic Control, vol. 64, no. 11, pp. 4705–4710, 2019. doi: 10.1109/TAC.2019.2904136
[11] C. Albea Sanchez, G. Garcia, H. Sabrina, W. P. M. H. Heemels, and L. Zaccarian, “Practical stabilisation of switched affine systems with dwell-time guarantees,” IEEE Trans. Automatic Control, vol. 64, no. 11, pp. 4811–4817, 2019. doi: 10.1109/TAC.2019.2907381
[12] Z. Li, D. Ma, and J. Zhao, “Dynamic event-triggered L control for switched affine systems with sampled-data switching,” Nonlinear Analysis:Hybrid Systems, vol. 39, pp. 1–12, 2021.
[13] S. Ding, X. Xie, and Y. Liu, “Event-triggered static/dynamic feedback control for discrete-time linear systems,” Information Sciences, vol. 524, 2020.
[14] S. Ding and Z. Wang, “Event-triggered synchronization of discrete-time neural networks: A switching approach,” Neural Networks, vol. 125, 2020.
[15] X. Xu and G. Zhai, “Practical stability and stabilization of hybrid and switched systems,” IEEE Trans. Automatic Control, vol. 50, no. 11, pp. 1897–1903, Nov. 2005. doi: 10.1109/TAC.2005.858680
[16] X. Xu, G. Zhai, and S. He, “On practical asymptotic stabilizability of switched affine systems,” Nonlinear Analysis:Hybrid Systems, vol. 2, no. 1, pp. 196–208, 2008. doi: 10.1016/j.nahs.2007.07.003
[17] X. Xu, G. Zhai, and S. He, “Some results on practical stabilizability of discrete-time switched affine systems,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 113–121, 2010.
[18] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical Stability of Nonlinear Systems. World Scientific, 1990.
[19] A. Loría and E. Panteley, Stability, Told by Its Developers. London: Springer London, 2006, pp. 199–258.
[20] M. Hejri, “Global practical stabilization of discrete-time switched affine systems via switched lyapunov functions and state-dependent switching functions,” Scientia Iranica, Transaction D, Computer Science & Electrical Engineering, DOI: 10.24200/SCI.2020.54524.3793, 2020.
[21] M. Hejri, “On the global practical stabilization of discrete-time switched affine systems: Application to switching power converters,” Scientia Iranica, Transaction D, Computer Science & Electrical Engineering, DOI: 10.24200/SCI.2020.55427.4217, 2020.
[22] L. Hetel and E. Fridman, “Robust sampled-data control of switched affine systems,” IEEE Trans. Automatic Control, vol. 58, no. 11, pp. 2922–2928, Nov. 2013. doi: 10.1109/TAC.2013.2258786
[23] G. S. Deaecto and L. N. Egidio, “Practical stability of discrete-time switched affine systems,” in Proc. European Control Conf., Aalborg, Denmark, 2016, pp. 2048–2053.
[24] C. A. Sanchez, A. Ventosa-Cutillas, A. S. A, and F. Gordillo, “Robust switching control design for uncertain discrete-time switched affine systems,” Int. Journal of Robust and Nonlinear Control, vol. 30, no. 17, pp. 7089–7102, 2020. doi: 10.1002/rnc.5158
[25] P. Bolzern and W. Spinelli, “Quadratic stabilization of a switched affine system about a nonequilibrium point,” in Proc. American Control Conf. Boston, Massachusetts: IEEE, June 30–July 2 2004, pp. 3890–3895.
[26] G. S. Deaecto and G. C. Santos, “State feedback H control design of continuous-time switched-affine systems,” IET Control Theory and Applications, vol. 9, no. 10, pp. 1511–1516, 2014.
[27] G. S. Deaecto, “Dynamic output feedback H control of continuoustime switched affine systems,” Automatica, vol. 71, pp. 44–49, 2016. doi: 10.1016/j.automatica.2016.04.022
[28] A. Poznyak, A. Polyakov, and V. Azhmyakov, Attractive Ellipsoids in Robust Control, T. Basar, Ed. Birkhauser, 2014.
[29] C. Perez, V. Azhmyakov, and A. Poznyak, “Practical stabilization of a class of switched systems: Dwell-time approach,” IMA Journal of Mathematical Control and Information, vol. 32, no. 4, pp. 689–702, May 2014.
[30] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2003.
[31] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory. Society for Industrial and Applied Mathematics, SIAM, 1994.
[32] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB,” in Proc. IEEE Int. Symp. Computer Aided Control Systems Design, Taipei, China, Sept. 2004, pp. 284–289.
[33] G.-R. Duan and H.-H. Yu, LMIs in Control Systems: Analysis, Design and Applications. CRC Press, Taylor & Francis Group, 2013.
[34] M. Kocvara and M. Stingl, PENBMI Users Guide (Version 2.1), www.penopt.com, March 5 2006.
[35] M. J. Lacerda and T. da Silveira Gomide, “Stability and stabilizability of switched discrete-time systems based on structured Lyapunov functions,” IET Control Theory &Applications, vol. 14, no. 5, pp. 781–789, 2020.
[36] A. Hassibi, J. How, and S. Boyd, “A path-following method for solving bmi problems in control,” in Proc. American Control Conf., San Diego, California, 1999, pp. 1385–1389.
[37] W.-Y. Chiu, “Method of reduction of variables for bilinear matrix inequality problems in system and control designs,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 47, no. 7, pp. 1241–1256, Jul. 2017. doi: 10.1109/TSMC.2016.2571323
[38] M. Hejri and A. Giua, “Hybrid modeling and control of switching DC-DC converters via MLD systems,” in Proc. IEEE 7th Int. Conf. Automation Science and Engineering, Trieste, Italy, Aug. 2011, pp. 714–719.