A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 8
Aug.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
S. Mohsen Azizi, "Robust Controller Synthesis and Analysis in Inverter-Dominant Droop-Controlled Islanded Microgrids," IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1401-1415, Aug. 2021. doi: 10.1109/JAS.2021.1004006
Citation: S. Mohsen Azizi, "Robust Controller Synthesis and Analysis in Inverter-Dominant Droop-Controlled Islanded Microgrids," IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1401-1415, Aug. 2021. doi: 10.1109/JAS.2021.1004006

Robust Controller Synthesis and Analysis in Inverter-Dominant Droop-Controlled Islanded Microgrids

doi: 10.1109/JAS.2021.1004006
More Information
  • This work investigates the problem of controller design for the inverters in an islanded microgrid. Robust $\mu$-synthesis controllers and local droop controllers are designed to regulate the output voltages of inverters and share power among them, respectively. The designed controllers alleviate the need for additional sensors to measure the states of the system by relying only on output feedback. It is shown that the designed $\mu$-synthesis controller properly damps resonant oscillations, and its performance is robust to the control-loop time delay and parameter uncertainties. The stability of a droop-controlled islanded microgrid including multiple distributed generation (DG) units is analyzed by linearizing the nonlinear power flow model around the nominal operating point and applying theorems from linear algebra. It is indicated that the droop controller stabilizes the microgrid system with dominantly inductive tie-line impedances for all values of resistive-inductive loads, while for the case of resistive-capacitive loads the stability is conditioned on an upper bound on the load susceptances. The robust performance of the designed $\mu$-synthesis controller is studied analytically, compared with the similar analysis in an $H_{\infty}$ control (benchmark) framework, and verified by simulations for a four DG benchmark microgrid. Furthermore, the robustness of the droop controllers is analyzed by Monte Carlo simulations in the presence of local voltage fluctuations and phase differences among neighboring DGs.

     

  • loading
  • [1]
    S. A. Khajehoddin, A. Bakhshai, and P. K. Jain, “A voltage balancing method and its stability boundary for five-level diode-clamped multilevel converters,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 2007, pp. 2204–2208.
    [2]
    S. A. Khajehoddin, A. Bakhshai, P. Jain, and J. Drobnik, “A robust power decoupler and maximum power point tracker topology for a grid-connected photovoltaic system,” in Proc. IEEE Power Electronics Specialists Conf., Jun. 2008, pp. 66–69.
    [3]
    M. Karimi-Ghartemani, S. A. Khajehoddin, P. Jain, and A. Bakhshai, “Comparison of two methods for addressing DC component in phaselocked loop (PLL) systems,” in Proc. IEEE Energy Conversion Congress and Exposition, Sept. 2011, pp. 3053–3058.
    [4]
    S. A. Khajehoddin, M. Karimi-Ghartemani, P. K. Jain, and A. Bakhshai, “DC-bus design and control for a single-phase grid-connected renewable converter with a small energy storage component,” IEEE Trans. Power Electronics, vol. 28, no. 7, pp. 3245–3254, Jul. 2013. doi: 10.1109/TPEL.2012.2222449
    [5]
    M. Karimi-Ghartemani, S. A. Khajehoddin, P. Jain, and A. Bakhshai, “A systematic approach to DC-bus control design in single-phase gridconnected renewable converters,” IEEE Trans. Power Electronics, vol. 28, no. 7, pp. 3158–3166, Jul. 2013. doi: 10.1109/TPEL.2012.2222672
    [6]
    S. Yang, Q. Lei, F. Z. Peng, and Z. Qian, “A robust control scheme for grid-connected voltage-source inverters,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 202–212, 2011. doi: 10.1109/TIE.2010.2045998
    [7]
    A. Kahrobaeian and Y. A.-R. Mohamed, “Robust single-loop direct current control of LCL-filtered converter-based DG units in grid-connected and autonomous microgrid modes,” IEEE Trans. Power Electronics, vol. 29, no. 10, pp. 5605–5619, 2014. doi: 10.1109/TPEL.2013.2294876
    [8]
    E. Twining and D. G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter,” IEEE Trans. Power Electronics, vol. 18, no. 3, pp. 888–895, 2003. doi: 10.1109/TPEL.2003.810838
    [9]
    M. Huang, X. Wang, P. C. Loh, and F. Blaabjerg, “Active damping of LLCL-filter resonance based on LC-trap voltage or current feedback,” IEEE Trans. Power Electronics, vol. 31, no. 3, pp. 2337–2346, 2016.
    [10]
    W. Wu, Y. Sun, M. Huang, X. Wang, H. Wang, F. Blaabjerg, M. Liserre, and H. S.-h. Chung, “A robust passive damping method for LLCL filter-based grid-tied inverters to minimize the effect of grid harmonic voltages,” IEEE Trans. Power Electronics, vol. 29, no. 7, pp. 3279–3289, 2014. doi: 10.1109/TPEL.2013.2279191
    [11]
    A. Rockhill, M. Liserre, R. Teodorescu, and P. Rodriguez, “Grid-filter design for a multimegawatt medium-voltage voltage-source inverter,” IEEE Trans. Industrial Electronics, vol. 58, no. 4, pp. 1205–1217, 2011. doi: 10.1109/TIE.2010.2087293
    [12]
    F. Huerta, D. Pizarro, S. Cobreces, F. J. Rodriguez, C. Girón, and A. Rodríguez, “LQG servo controller for the current control of grid-connected voltage-source converters,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4272–4284, 2012. doi: 10.1109/TIE.2011.2179273
    [13]
    K. H. Ahmed, A. M. Massoud, S. J. Finney, and B. W. Williams, “A modified stationary reference frame-based predictive current control with zero steady-state error for LCL coupled inverter-based distributed generation systems,” IEEE Trans. Industrial Electronics, vol. 58, no. 4, pp. 1359–1370, 2011. doi: 10.1109/TIE.2010.2050414
    [14]
    D. Dong, T. Thacker, R. Burgos, F. Wang, and D. Boroyevich, “On zero steady-state error voltage control of single-phase PWM inverters with different load types,” IEEE Trans. Power Electronics, vol. 26, no. 11, pp. 3285–3297, Nov. 2011. doi: 10.1109/TPEL.2011.2157361
    [15]
    M. Golsorkhi and D. Lu, “A control method for inverter-based islanded microgrids based on V-I droop characteristics,” IEEE Trans. Power Delivery, vol. 30, no. 3, pp. 1196–1204, Jun. 2015. doi: 10.1109/TPWRD.2014.2357471
    [16]
    X. Wang, F. Blaabjerg, and Z. Chen, “Autonomous control of inverterinterfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid,” IEEE Trans. Industry Applications, vol. 50, no. 1, pp. 452–461, Jan. 2014. doi: 10.1109/TIA.2013.2268734
    [17]
    B. Johnson, S. Dhople, J. Cale, A. Hamadeh, and P. Krein, “Oscillatorbased inverter control for islanded three-phase microgrids,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 387–395, Jan. 2014. doi: 10.1109/JPHOTOV.2013.2280953
    [18]
    U.-M. Choi, H.-H. Lee, and K.-B. Lee, “Simple neutral-point voltage control for three-level inverters using a discontinuous pulse width modulation,” IEEE Trans. Energy Conversion, vol. 28, no. 2, pp. 434–443, Jun. 2013. doi: 10.1109/TEC.2013.2257786
    [19]
    J. Vasquez, J. Guerrero, A. Luna, P. Rodriguez, and R. Teodorescu, “Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes,” IEEE Trans. Industrial Electronics, vol. 56, no. 10, pp. 4088–4096, Oct. 2009. doi: 10.1109/TIE.2009.2027921
    [20]
    J.-W. Jung, N. T.-T. Vu, D. Q. Dang, T. D. Do, Y.-S. Choi, and H. H. Choi, “A three-phase inverter for a standalone distributed generation system: Adaptive voltage control design and stability analysis,” IEEE Trans. Energy Conversion, vol. 29, no. 1, pp. 46–56, Mar. 2014. doi: 10.1109/TEC.2013.2288774
    [21]
    J. Hu, J. Zhu, and D. Dorrell, “Model predictive control of inverters for both islanded and grid-connected operations in renewable power generations,” IET Renewable Power Generation, vol. 8, no. 3, pp. 240–248, Apr. 2014. doi: 10.1049/iet-rpg.2013.0078
    [22]
    H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, “A decentralized robust mixed H2/H voltage control scheme to improve small/large-signal stability and FRT capability of islanded multi-DER microgrid considering load disturbances,” IEEE Systems J., vol. 12, no. 3, pp. 2610–2621, 2018. doi: 10.1109/JSYST.2017.2716351
    [23]
    M. Raeispour, H. Atrianfar, H. R. Baghaee, and G. B. Gharehpetian, “Robust hierarchical control of VSC-based off-grid AC microgrids to enhancing stability and FRT capability considering time-varying delays,” IEEE J. Emerging and Selected Topics in Power Electronics, pp. 1–1, 2020. DOI: 10.1109/JESTPE.2020.3017713
    [24]
    H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, “A generalized descriptor-system robust H control of autonomous microgrids to improve small and large signal stability considering communication delays and load nonlinearities,” Electrical Power and Energy Systems, vol. 92, pp. 63–82, 2017. doi: 10.1016/j.ijepes.2017.04.007
    [25]
    M. Raeispour, H. Atrianfar, H. R. Baghaee, and G. B. Gharehpetian, “Robust sliding mode and mixed H2/H output feedback primary control of AC microgrids,” IEEE Systems J., pp. 1–12, 2020. DOI: 10.1109/JSYST.2020.2999553
    [26]
    H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, “A decentralized power management and sliding mode control strategy for hybrid AC/DC microgrids including renewable energy resources,” IEEE Trans. Industrial Informatics, pp. 1–1, 2017. DOI: 10.1109/TII.2017.2677943.
    [27]
    H. R. Baghaee, M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi, “Decentralized sliding mode control of WG/PV/FC microgrids under unbalanced and nonlinear load conditions for on- and off-grid modes,” IEEE Systems J., vol. 12, no. 4, pp. 3108–3119, 2018.
    [28]
    F. Ornelas-Tellez, J. J. Rico-Melgoza, E. Espinosa-Juarez, and E. N. Sanchez, “Optimal and robust control in DC microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5543–5553, 2018. doi: 10.1109/TSG.2017.2690566
    [29]
    K. Wang, X. Huang, B. Fan, Q. Yang, G. Li, and M. L. Crow, “Decentralized power sharing control for parallel-connected inverters in islanded single-phase micro-grids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6721–6730, 2018. doi: 10.1109/TSG.2017.2720683
    [30]
    A. Pilloni, A. Pisano, and E. Usai, “Robust finite-time frequency and voltage restoration of inverter-based microgrids via sliding-mode cooperative control,” IEEE Trans. Industrial Electronics, vol. 65, no. 1, pp. 907–917, 2018. doi: 10.1109/TIE.2017.2726970
    [31]
    T. Dragičević, “Model predictive control of power converters for robust and fast operation of AC microgrids,” IEEE Trans. Power Electronics, vol. 33, no. 7, pp. 6304–6317, 2018. doi: 10.1109/TPEL.2017.2744986
    [32]
    J. Xiang, Y. Wang, Y. Li, and W. Wei, “Stability and steady-state analysis of distributed cooperative droop controlled dc microgrids,” IET Control Theory Applications, vol. 10, no. 18, pp. 2490–2496, 2016. doi: 10.1049/iet-cta.2016.0496
    [33]
    F. Gao, S. Bozhko, A. Costabeber, C. Patel, P. Wheeler, C. I. Hill, and G. Asher, “Comparative stability analysis of droop control approaches in voltage-source-converter-based DC microgrids,” IEEE Trans. Power Electronics, vol. 32, no. 3, pp. 2395–2415, Mar. 2017. doi: 10.1109/TPEL.2016.2567780
    [34]
    A. P. N. Tahim, D. J. Pagano, E. Lenz, and V. Stramosk, “Modeling and stability analysis of islanded DC microgrids under droop control,” IEEE Trans. Power Electronics, vol. 30, no. 8, pp. 4597–4607, Aug. 2015. doi: 10.1109/TPEL.2014.2360171
    [35]
    B. Fan, J. Peng, J. Duan, Q. Yang, and W. Liu, “Distributed control of multiple-bus microgrid with paralleled distributed generators,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 676–684, May 2019. doi: 10.1109/JAS.2019.1911477
    [36]
    V. Mariani, F. Vasca, J. C. Vásquez, and J. M. Guerrero, “Model order reductions for stability analysis of islanded microgrids with droop control,” IEEE Trans. Industrial Electronics, vol. 62, no. 7, pp. 4344–4354, Jul. 2015. doi: 10.1109/TIE.2014.2381151
    [37]
    X. Guo, Z. Lu, B. Wang, X. Sun, L. Wang, and J. M. Guerrero, “Dynamic phasors-based modeling and stability analysis of droopcontrolled inverters for microgrid applications,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2980–2987, Nov. 2014. doi: 10.1109/TSG.2014.2331280
    [38]
    E. Barklund, N. Pogaku, M. Prodanovic, C. Hernandez-Aramburo, and T. C. Green, “Energy management in autonomous microgrid using stability-constrained droop control of inverters,” IEEE Trans. Power Electronics, vol. 23, no. 5, pp. 2346–2352, Sept. 2008. doi: 10.1109/TPEL.2008.2001910
    [39]
    M. F. M. Arani and Y. A. R. I. Mohamed, “Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability,” IEEE Trans. Power Systems, vol. 30, no. 1, pp. 385–396, Jan. 2015. doi: 10.1109/TPWRS.2014.2321287
    [40]
    M. B. Delghavi and A. Yazdani, “An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids,” IEEE Trans. Power Delivery, vol. 26, no. 3, pp. 1764–1773, Jul. 2011. doi: 10.1109/TPWRD.2011.2119497
    [41]
    R. Majumder, B. Chaudhuri, A. Ghosh, R. Majumder, G. Ledwich, and F. Zare, “Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop,” IEEE Trans. Power Systems, vol. 25, no. 2, pp. 796–808, May 2010. doi: 10.1109/TPWRS.2009.2032049
    [42]
    J. Schiffer, R. Ortega, A. Astolfi, J. Raisch, and T. Sezi, “Conditions for stability of droop-controlled inverter-based microgrids,” Automatica, vol. 50, no. 10, pp. 2457–2469, 2014. doi: 10.1016/j.automatica.2014.08.009
    [43]
    P. Prabhakaran, Y. Goyal, and V. Agarwal, “Novel nonlinear droop control techniques to overcome the load sharing and voltage regulation issues in DC microgrid,” IEEE Trans. Power Electronics, vol. 33, no. 5, pp. 4477–4487, 2018. doi: 10.1109/TPEL.2017.2723045
    [44]
    Y. Lin and W. Xiao, “Novel piecewise linear formation of droop strategy for DC microgrid,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6747–6755, 2019. doi: 10.1109/TSG.2019.2911013
    [45]
    Z. Peng, J. Wang, D. Bi, Y. Wen, Y. Dai, X. Yin, and Z. J. Shen, “Droop control strategy incorporating coupling compensation and virtual impedance for microgrid application,” IEEE Trans. Energy Conversion, vol. 34, no. 1, pp. 277–291, 2019.
    [46]
    M. Fakhari Moghaddam Arani and Y. A. I. Mohamed, “Dynamic droop control for wind turbines participating in primary frequency regulation in microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5742–5751, 2018. doi: 10.1109/TSG.2017.2696339
    [47]
    A. Trivedi and M. Singh, “Repetitive controller for VSIs in droop-based AC-microgrid,” IEEE Trans. Power Electronics, vol. 32, no. 8, pp. 6595–6604, 2017. doi: 10.1109/TPEL.2016.2619367
    [48]
    M. Babazadeh and A. Nobakhti, “Robust decomposition and structured control of an islanded multi-DG microgrid,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2463–2474, 2019. doi: 10.1109/TSG.2018.2798617
    [49]
    R. Pérez-Ibacache, C. A. Silva, and A. Yazdani, “Linear state-feedback primary control for enhanced dynamic response of AC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3149–3161, 2019. doi: 10.1109/TSG.2018.2818624
    [50]
    M. M. Mardani, M. H. Khooban, A. Masoudian, and T. Dragičević, “Model predictive control of DC–DC converters to mitigate the effects of pulsed power loads in naval DC microgrids,” IEEE Trans. Industrial Electronics, vol. 66, no. 7, pp. 5676–5685, 2019. doi: 10.1109/TIE.2018.2877191
    [51]
    S. M. Azizi, “Linear stability and robustness analysis of droop-controller islanded microgrids,” in Proc. IEEE Systems Conf., Montreal, Canada, 2020.
    [52]
    P. Kundur and N. Balu, Power System Stability and Control, ser. EPRI Power System Engineering Series. McGraw-Hill, 1994.
    [53]
    S. M. Azizi and S. A. Khajehoddin, “Robust inverter control design in islanded microgrids using µ-synthesis,” in Proc. IEEE Energy Conversion Congress and Exposition, 2016, pp. 1–5.
    [54]
    K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice-Hall, 1998.
    [55]
    J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids—part I: Decentralized and hierarchical control,” IEEE Trans. Industrial Electronics, vol. 60, no. 4, pp. 1254–1262, 2013. doi: 10.1109/TIE.2012.2194969
    [56]
    Y. W. Li and C. Kao, “An accurate power control strategy for powerelectronics-interfaced distributed generation units operating in a lowvoltage multibus microgrid,” IEEE Trans. Power Electronics, vol. 24, no. 12, pp. 2977–2988, 2009. doi: 10.1109/TPEL.2009.2022828
    [57]
    A. de J. C. Leal, C. L. T. Rodríguez, and F. Santamaria, “Comparative of power calculation methods for single-phase systems under sinusoidal and non-sinusoidal operation,” Energies, vol. 13, no. 17, pp. 1–20, 2020.
    [58]
    M. A. Al-Alaoui, “Using fractional delay to control the magnitudes and phases of integrators and differentiators,” IET Signal Processing, vol. 1, no. 2, pp. 107–119, 2007. doi: 10.1049/iet-spr:20060246
    [59]
    P. Kotsampopoulos, D. Lagos, N. Hatziargyriou, M. O. Faruque, G. Lauss, O. Nzimako, P. Forsyth, M. Steurer, F. Ponci, A. Monti, V. Dinavahi, and K. Strunz, “A benchmark system for hardware-in-the loop testing of distributed energy resources,” IEEE Power and Energy Technology Systems J., vol. 5, no. 3, pp. 94–103, 2018. doi: 10.1109/JPETS.2018.2861559

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)

    Article Metrics

    Article views (977) PDF downloads(64) Cited by()

    Highlights

    • Controller design for inverters that is robust against uncertainties and time delays
    • Linear technique for stability analysis and design criterion for droop gains
    • Robustness analysis of droop controllers against voltage amplitude and phase variations

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return