A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 11
Nov.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
V. N. Vo, H. Tran, and C. So-In, "Enhanced Intrusion Detection System for an EH IoT Architecture Using a Cooperative UAV Relay and Friendly UAV Jammer," IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1786-1799, Nov. 2021. doi: 10.1109/JAS.2021.1004171
Citation: V. N. Vo, H. Tran, and C. So-In, "Enhanced Intrusion Detection System for an EH IoT Architecture Using a Cooperative UAV Relay and Friendly UAV Jammer," IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1786-1799, Nov. 2021. doi: 10.1109/JAS.2021.1004171

Enhanced Intrusion Detection System for an EH IoT Architecture Using a Cooperative UAV Relay and Friendly UAV Jammer

doi: 10.1109/JAS.2021.1004171
Funds:  This work was supported in part by Thailand Science Research and Innovation (TSRI) and National Research Council of Thailand (NRCT) via International Research Network Program (IRN61W0006) and by Khon Kaen University, Thailand. Van Nhan Vo and Hung Tran have equal contributions on this paper
More Information
  • In this paper, the detection capabilities and system performance of an energy harvesting (EH) Internet of Things (IoT) architecture in the presence of an unmanned aerial vehicle (UAV) eavesdropper (UE) are investigated. The communication protocol is divided into two phases. In the first phase, a UAV relay (UR) cooperates with a friendly UAV jammer (UJ) to detect the UE, and the UR and UJ harvest energy from a power beacon (PB). In the second phase, a ground base station (GBS) sends a confidential signal to the UR using non-orthogonal multiple access (NOMA); the UR then uses its harvested energy to forward this confidential signal to IoT destinations (IDs) using the decode-and-forward (DF) technique. Simultaneously, the UJ uses its harvested energy to emit an artificial signal to combat the detected UE. A closed-form expression for the probability of detecting the UE (the detection probability, DP) is derived to analyze the detection performance. Furthermore, the intercept probability (IP) and throughput of the considered IoT architecture are determined. Accordingly, we identify the optimal altitudes for the UR and UJ to enhance the system and secrecy performance. Monte Carlo simulations are employed to verify our approach.

     

  • loading
  • [1]
    Z. Sheng, C. Mahapatra, C. Zhu, and V. C. M. Leung, “Recent advances in industrial wireless sensor networks toward efficient management in IoT,” IEEE Access, vol. 3, pp. 622–637, May 2015. doi: 10.1109/ACCESS.2015.2435000
    [2]
    B. Ji, Y. Li, B. Zhou, C. Li, K. Song, and H. Wen, “Performance analysis of UAV relay assisted IoT communication network enhanced with energy harvesting,” IEEE Access, vol. 7, pp. 38738–38747, 2019. doi: 10.1109/ACCESS.2019.2906088
    [3]
    J. M. Williams, R. Khanna, J. P. Ruiz-Rosero, G. Pisharody, Y. Qian, C. R. Carlson, H. Liu, and G. Rmirez-Gonzalez, “Weaving the wireless web: Toward a low-power, dense wireless sensor network for the industrial IoT,” IEEE Microwave Mag., vol. 18, no. 7, pp. 40–63, Oct. 2017. doi: 10.1109/MMM.2017.2740738
    [4]
    Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on UAV communications for 5G and beyond,” Proc. IEEE, vol. 107, no. 12, pp. 2327–2375, 2019.
    [5]
    Y. Zhu, G. Zheng, and M. Fitch, “Secrecy rate analysis of UAV-enabled mmwave networks using matern hardcore point processes,” IEEE J. Sel. Areas Commun., vol. 3, no. 7, pp. 1397–1409, 2018.
    [6]
    J. Tang, G. Chen, and J. Coon, “Secrecy performance analysis of wireless communications in the presence of UAV jammer and randomly located UAV eavesdroppers,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 11, pp. 3026–3041, Apr. 2019. doi: 10.1109/TIFS.2019.2912074
    [7]
    N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives,” IEEE Internet of Things J., vol. 3, no. 6, pp. 899–922, Dec. 2016. doi: 10.1109/JIOT.2016.2612119
    [8]
    M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on UAV for wireless network: Application, challenges, and open problems,” IEEE Commun. Surveys &Tutorials, vol. 21, no. 3, pp. 2334–2360, Mar. 2019.
    [9]
    M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 3949–3963, Jun. 2016. doi: 10.1109/TWC.2016.2531652
    [10]
    S. Shakoor, Z. Kaleem, M. I. Baig, O. Chughtai, T. Q. Duong, and L. D. Nguyen, “Role of UAVs in public safety communications: Energy efficiency perspective,” IEEE Access, vol. 7, pp. 2169–3536, Sept. 2019. doi: 10.1109/ACCESS.2018.2886583
    [11]
    B. Ji, Z. Chen, Y. Li, S. Chen, G. Zheng, and H. Wen, “Energy harvesting and information transmission scheme with UAV relay cooperation,” EURASIP J. Wireless Commun. and Networking, vol. 2019, no. 278, pp. 1–9, Dec. 2019.
    [12]
    S. Yin, Z. Qu, and L. Li, “Uplink resource allocation in cellular networks with energy-constrained UAV relay,” in Proc. IEEE Veh. Technol. Conf., Porto, Portugal, Jun. 2018, pp. 1–6.
    [13]
    X. Sun, D. W. K. Ng, Z. Ding, Y. Xu, and Z. Zhong, “Physical layer security in UAV systems: Challenges and opportunities,” IEEE Wireless Commun., vol. 26, no. 5, pp. 40–47, Oct. 2019. doi: 10.1109/MWC.001.1900028
    [14]
    X. Yuan, Z. Feng, W. Ni, Z. Wei, R. P. Liu, and J. A. Zhang, “Secrecy rate analysis against aerial eavesdropper,” IEEE Trans. Commun., vol. 67, no. 10, pp. 7027–7042, 2019. doi: 10.1109/TCOMM.2019.2927449
    [15]
    I. Butun, P. Osterberg, and H. Song, “Security of the internet of things: Vulnerabilities, attacks, and countermeasures,” IEEE Commun. Surveys &Tutorials, vol. 22, no. 1, pp. 616–644, Nov. 2019.
    [16]
    P. Nguyen, T. Kim, D. H. L. Miao, E. Kenneally, D. Massey, E. Frew, R. Han, and T. Vu, “Towards RF-based localization of a drone and its controller,” in Proc. Micro Aerial Veh. Networks, Sys., and Applicat., Seoul, Korea, Jun. 2019, pp. 21–26.
    [17]
    H.-M. Wang, X. Zhang, and J.-C. Jiang, “UAV-involved wireless physical-layer secure communications: Overview and research directions,” IEEE Wireless Commun., vol. 26, no. 5, pp. 32–39, Oct. 2019. doi: 10.1109/MWC.001.1900045
    [18]
    Y. Zhou, P. L. Yeoh, H. Chen, Y. Li, R. Schober, L. Zhuo, and B. Vucetic, “Improving physical layer security via a UAV friendly jammer for unknown eavesdropper location,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 11280–11284, 2018. doi: 10.1109/TVT.2018.2868944
    [19]
    M. Ezuma, F. Erden, C. K. Anjinappa, O. Ozdemir, and I. Guvenc, “Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and bluetooth interference,” IEEE Open J. Commun. Society, vol. 1, pp. 60–76, Nov. 2019.
    [20]
    Y. Li, R. Zhang, J. Zhang, S. Gao, and L. Yang, “Cooperative jamming for secure UAV communications with partial eavesdropper information,” IEEE Access, vol. 7, pp. 94593–94603, 2019. doi: 10.1109/ACCESS.2019.2926741
    [21]
    D.-D. Tran, D.-B. Ha, V. N. Vo, C. So-In, H. Tran, T. G. Nguyen, Z. Baig, and S. Sanguanpong, “Performance analysis of DF/AF cooperative MISO wireless sensor networks with NOMA and SWIPT over Nakagami-m fading,” IEEE Access, vol. 6, pp. 56142–56161, Oct. 2018. doi: 10.1109/ACCESS.2018.2872935
    [22]
    C. G. L. Z. C. F. Z. D. H.-H. Chen, “Energy harvesting enabled NOMA systems with full-duplex relaying,” IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 7179–7183, 2019. doi: 10.1109/TVT.2019.2914508
    [23]
    J.Chen, L. Yang, and M.-S. Alouini, “Physical layer security for cooperative NOMA systems,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4645–4649, May 2018. doi: 10.1109/TVT.2017.2789223
    [24]
    P. Tedeschi, S. Sciancalepore, and R. D. Pietro, “Security in energy harvesting networks: A survey of current solutions and research challenges,” arXiv preprint arXiv: 2004.10394, pp. 1–32, Apr. 2020.
    [25]
    D.-D. Tran, H.-V. Tran, D.-B. Ha, H. Tran, and G. Kaddoum, “Performance analysis of two-way relaying system with RF-EH and multiple antennas,” in Proc. Veh. Technology Conf., Sept. 2016, pp. 1–5.
    [26]
    Y. Chen, N. Zhao, and Z. D. M.-S. Alouini, “Multiple UAVs as relays: Multi-hop single link versus multiple dual-hop links,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 6348–6359, Aug. 2018. doi: 10.1109/TWC.2018.2859394
    [27]
    M. F. Sohail, C. Y. Leow, and S. Won, “Non-orthogonal multiple access for unmanned aerial vehicle assisted communication,” IEEE Access, vol. 6, pp. 22716–22727, Apr. 2018. doi: 10.1109/ACCESS.2018.2826650
    [28]
    V. N. Q. Bao, T. Q. Duong, and C. Tellambura, “On the performance of cognitive underlay multihop networks with imperfect channel state information,” IEEE Trans. Commun., vol. 61, no. 12, pp. 4864–4873, Dec. 2013. doi: 10.1109/TCOMM.2013.110413.130167
    [29]
    D.-T. Do, M. Vaezi, and T.-L. Nguyen, “Wireless powered cooperative relaying using NOMA with imperfect CSI,” in Proc. IEEE Globecom, Abu Dhabi, Sept. 2018, pp. 1–6.
    [30]
    W. Cai, C. Chen, L. Bai, Y. Jin, and J. Choi, “User selection and power allocation schemes for downlink NOMA systems with imperfect CSI,” in Proc. IEEE Veh. Technology Conf., Montreal, QC, Canada, Sept. 2016, pp. 1–5.
    [31]
    S. Guo and X. Zhou, “Robust resource allocation with imperfect channel estimation in NOMA-based heterogeneous vehicular networks,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2321–2332, Mar. 2019. doi: 10.1109/TCOMM.2018.2885999
    [32]
    B. Ji, Y. Li, S. Chen, C. Han, C. Li, and H. Wen, “Secrecy outage analysis of UAV assisted relay and antenna selection for cognitive network under Nakagami-m channel,” IEEE Trans. Cognitive Commun. and Networking, vol. 7, pp. 1–11, Jan. 2020.
    [33]
    P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han, and T. V. Matthan:, “Drone presence detection by identifying physical signatures in the drone’s RF communication,” in Proc. Annual Intern. Conf. Mobile Sys., Applicat., and Services, New York, USA, Jun. 2017, pp. 211–224.
    [34]
    M.-N. Nguyen, L. D. Nguyen, T. Q. Duong, and H. D. Tuan, “Realtime optimal resource allocation for embedded UAV communication systems,” IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 225–228, Feb. 2019. doi: 10.1109/LWC.2018.2867775
    [35]
    H.-T. Ye, X. Kang, Y.-C. Liang, and J. Joung, “Full-duplex wirelesspowered IoT networks with unmanned aerial vehicle,” in Proc. Int. Conf. Inf. and Commun. Technol. Convergence, Jeju, South Korea, Oct. 2018, pp. 124–129.
    [36]
    Z. Yang, W. Xu, and M. Shikh-Bahaei, “Energy efficient UAV communication with energy harvesting,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1913–1927, Feb. 2020. doi: 10.1109/TVT.2019.2961993
    [37]
    X. Yue, Y. Liu, S. Kang, and A. Nallanathan, “Performance analysis of NOMA with fixed gain relaying over Nakagami-m fading channels,” IEEE Access, vol. 5, pp. 5445–5454, Mar. 2017. doi: 10.1109/ACCESS.2017.2677504
    [38]
    H. Tran, T. X. Quach, H. Tran, and E. Uhlemann, “Optimal energy harvesting time and transmit power in cognitive radio network under joint constraints of primary users and eavesdroppers,” in Proc. Int. Symp. Personal, Indoor and Mobile Radio Commun., Oct. 2017, pp. 1–8.
    [39]
    D. Sun, T. Song, B. Gu, X. Li, J. Hu, and M. Liu, “Spectrum sensing and the utilization of spectrum opportunity tradeoff in cognitive radio network,” IEEE Commun. Letters, vol. 20, no. 12, pp. 2442–2445, Dec. 2016. doi: 10.1109/LCOMM.2016.2605674
    [40]
    A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Relaying protocols for wireless energy harvesting and information processing,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3622–3636, Jul. 2013. doi: 10.1109/TWC.2013.062413.122042
    [41]
    Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, Dec. 2014. doi: 10.1109/LSP.2014.2343971
    [42]
    V. N. Vo, T. G. Nguyen, C. So-In, and H. Tran, “Outage performance analysis of energy harvesting wireless sensor networks for NOMA transmissions,” Mobile Networks and Applicat., vol. 25, pp. 23–41, Jan. 2020. doi: 10.1007/s11036-018-1188-7
    [43]
    J. Moon, H. Lee, C. Song, and I. Lee, “Secrecy performance optimization for wireless powered communication networks with an energy harvesting jammer,” IEEE Trans. Commun., vol. 65, no. 2, pp. 764–774, Feb. 2017. doi: 10.1109/TCOMM.2016.2623627
    [44]
    L. Mohjazi, S. Muhaidat, M. Dianati, and M. Al-Qutayri, “Outage probability and throughput of SWIPT relay networks with differential modulation,” in Proc. IEEE Veh. Technology Conf., Toronto, ON, Canada, Feb. 2018, pp. 1–6.
    [45]
    A. M. Hayaneh, S. A. R. Zaidi, D. C. Mclernon, M. D. Renzo, and M. Ghogho, “Performance analysis of UAV enabled disaster recovery networks: A stochastic geometric framework based on cluster processes,” IEEE Access, vol. 6, pp. 26215–26230, 2018. doi: 10.1109/ACCESS.2018.2835638
    [46]
    Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Selected Areas Commun., vol. 35, no. 10, pp. 2181–2195, Oct. 2017. doi: 10.1109/JSAC.2017.2725519
    [47]
    I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products, 8th ed., D. Zwillinger and V. Moll, Eds. Elsevier, 2014.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (832) PDF downloads(78) Cited by()

    Highlights

    • The detection capabilities and system performance of an EH IoT architecture
    • A UR cooperates with a friendly UJ to detect the UE in 3D space
    • The closed-form expressions for the DP, throughput, and IP
    • The trade-off between throughput and secrecy performance
    • The optimal altitudes of the UR and UJ to improve the system and secrecy performance

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return