A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 4
Oct.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Wei He, Zhijun Li and C. L. Philip Chen, "A Survey of Human-centered Intelligent Robots: Issues and Challenges," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 602-609, Oct. 2017. doi: 10.1109/JAS.2017.7510604
Citation: Wei He, Zhijun Li and C. L. Philip Chen, "A Survey of Human-centered Intelligent Robots: Issues and Challenges," IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 602-609, Oct. 2017. doi: 10.1109/JAS.2017.7510604

A Survey of Human-centered Intelligent Robots: Issues and Challenges

doi: 10.1109/JAS.2017.7510604
Funds:

Guangzhou Research Collaborative Innovation Projects 2014Y2-00507

Guangdong Science and Technology Research Collaborative Innovation Projects 2014B090901056

the National Natural Science Foundation of China 61573147

the National Natural Science Foundation of China 61761130080

the National Natural Science Foundation of China 61625303

Guangdong Science and Technology Research Collaborative Innovation Projects 2013B010102010

Guangdong Science and Technology Plan Project (Application Technology Research Foundation) 2015B020233006

National High-Tech Research and Development Program of China (863 Program) 2015AA042303

the National Natural Science Foundation of China 61522302

the National Natural Science Foundation of China 91520201

Guangdong Science and Technology Research Collaborative Innovation Projects 2015B020214003

More Information
  • Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.

     

  • loading
  • [1]
    J. Heinzmann and A. Zelinsky, "A safe-control paradigm for humanrobot interaction, " J. Intell. Rob. Syst. , vol. 25, no. 4, pp. 295-310, Aug 1999. doi: 10.1023/A%3A1008135313919
    [2]
    C. G. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schaeffer, and E. Burdet, "Human-like adaptation of force and impedance in stable and unstable interactions, " IEEE Trans. Rob. , vol. 27, no. 5, pp. 918-930, Oct. 2011. http://dl.acm.org/citation.cfm?id=2335607
    [3]
    O. Khatib, O. Brock, K. C. Chang, D. Ruspini, L. Sentis, and S. Viji, "Human-centered robotics and interactive haptic simulation, " Int. J. Rob. Res. , vol. 23, no. 2, pp. 167-178, Feb. 2004. doi: 10.1007/3-540-36460-9_16
    [4]
    M. Zinn, B. Roth, O. Khatib, and J. K. Salisbury, "A new actuation approach for human friendly robot design, " Int. J. Rob. Res. , vol. 23, no. 4-5, pp. 379-398, Apr. 2004. doi: 10.1007/3-540-36268-1_9
    [5]
    Z. Z. Bien and D. Stefanov, Advances in Rehabilitation Robotics:Human-friendly Technologies on Movement Assistance and Restoration for People with Disabilities. Berlin Heidelberg, Germany:Springer, 2004.
    [6]
    N. Kawarazaki, I. Hoya, K. Nishihara, and T. Yoshidome, "7 cooperative welfare robot system using hand gesture instructions, " in Advances in Rehabilitation Robotics, Z. Z. Bien and D. Stefanov, Eds. Berlin Heidelberg, Germany: Springer, 2004, pp. 143-153.
    [7]
    R. A. Russell, "Survey of robotic applications for odor-sensing technology, " Int. J. Rob. Res. , vol. 20, no. 2, pp. 144-162, Feb. 2001. http://imamat.oxfordjournals.org/external-ref?access_num=10.1177/02783640122067318&link_type=DOI
    [8]
    J. Huang, T. Supaongprapa, I. Terakura, F. M. Wang, N. Ohnishi, and N. Sugie, "A model-based sound localization system and its application to robot navigation, " Rob. Auton. Syst. , vol. 27, no. 4, pp. 199-209, Jun. 1999. http://www.sciencedirect.com/science/article/pii/S0921889099000020
    [9]
    O. Wijk and H. I. Christensen, "Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data, " Rob. Auton. Syst. , vol. 31, no. 1-2, pp. 31-42, Apr. 2000. http://www.sciencedirect.com/science/article/pii/S0921889099000858
    [10]
    K. D. Harris and M. Recce, "Absolute localization for a mobile robot using place cells, " Rob. Auton. Syst. , vol. 22, no. 3-4, pp. 393-406, Dec. 1997. http://www.sciencedirect.com/science/article/pii/S092188909700050X
    [11]
    P. I. Corke and M. C. Good, "Dynamic effects in visual closed-loop systems, " IEEE Trans. Rob. Automat. , vol. 12, no. 5, pp. 671-683, Oct. 1996. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=538973
    [12]
    P. E. Trahanias, S. Velissaris, and S. C. Orphanoudakis, "Visual recognition of workspace landmarks for topological navigation, " Rob. Auton. Syst. , vol. 7, no. 2, pp. 143-158, Sep. 1999. http://dl.acm.org/citation.cfm?id=591530
    [13]
    Z. J. Li, Z. C. Huang, W. He, and C. Y. Su, "Adaptive impedance control for an upper limb robotic exoskeleton using biological signals, " IEEE Trans. Ind. Electron. , vol. 64, no. 2, pp. 1664-1674, Feb. 2017. http://ieeexplore.ieee.org/document/7426396/
    [14]
    Z. J. Li, H. Z. Xiao, C. G. Yang, and Y. W. Zhao, "Model predictive control of nonholonomic chained systems using general projection neural networks optimization, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 45, no. 10, pp. 1313-1321, Oct. 2015. http://ieeexplore.ieee.org/document/7042779/
    [15]
    Z. J. Li, S. T. Xiao, S. S. Ge, and H. Su, "Constrained multilegged robot system modeling and fuzzy control with uncertain kinematics and dynamics incorporating foot force optimization, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 1, pp. 1-15, Jan. 2016. http://ieeexplore.ieee.org/document/7101859/
    [16]
    N. Hogan, "Impedance control:An approach to manipulation:Part Ⅰ-Ⅱ-Ⅲ, " J. Dyn. Syst. Measur. Control, vol. 107, pp. 1-24, 1985. doi: 10.1115/1.3140702
    [17]
    S. Jezernik, G. Colombo, and M. Morari, "Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-dof robotic orthosis, " IEEE Trans. Rob. Automat. , vol. 20, no. 3, pp. 574-582, Jun. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1303704
    [18]
    P. W. Xiong, H. D. Xiao, A. G. Song, L. Y. Hu, X. P. Liu, and L. H. Feng, "A target grabbing strategy for telerobot based on improved stiffness display device, " IEEE/CAA J. Automat. Sin., 2017, doi: 10.1109/JAS.2016.7510256.
    [19]
    S. P. Lum, S. L. Lehman, and D. J. Reinkensmeyer, "The bimanual lifting rehabilitator: An adaptive machine for therapy of stroke patients, " IEEE Trans. Rehab. Eng. , vol. 3, no. 2, pp. 166-174, Jun. 1995. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=392371
    [20]
    N. Shoval, M. P. Kwan, K. H. Reinau, and H. Harder, "The shoemaker's son always goes barefoot: Implementations of GPS and other tracking technologies for geographic research, " Geoforum, vol. 51, pp. 1-5, Jan. 2014. http://www.narcis.nl/publication/RecordID/oai%3Adspace.library.uu.nl%3A1874%2F288977/coll/person/id/1/Language/nl
    [21]
    C. H. Choi and H. J. Joo, "Motion recognition technology based remote Taekwondo Poomsae evaluation system, " Multim. Tools Appl. , vol. 75, no. 21, pp. 13135-13148, Nov. 2016. doi: 10.1007/s11042-015-2901-1
    [22]
    D. Y. Wu and J. Gan, "Assistant haptic interaction technology for blind internet user, " J. Eng. Design, vol. 17, no. 2, pp. 128-133, 155, Apr. 2010. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCSJ201002014.htm
    [23]
    L. Deng and X. Li, "Machine learning paradigms for speech recognition: An overview, " IEEE Trans. Audio Speech Lang. Process. , vol. 21, no. 5, pp. 1060-1089, May 2013. http://ieeexplore.ieee.org/document/6423821/
    [24]
    J. Y. Long, Y. Q. Li, H. T. Wang, T. Y. Yu, J. H. Pan, and F. Li, "A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 20, no. 5, pp. 720-729, Sep. 2012. http://ieeexplore.ieee.org/document/6213127/
    [25]
    L. Spalzzi, "A survey on case-based planning, " Artif. Intell. Rev. , vol. 16, no. 1, pp. 3-36, Sep. 2001. doi: 10.1023/A%3A1011081305027
    [26]
    T. Kaupp, A. Makarenko, and H. Durrant-Whyte, "Human-robot communication for collaborative decision making-a probabilistic approach, " Rob. Auton. Syst. , vol. 58, no. 5, pp. 444-456, May 2010. http://dl.acm.org/citation.cfm?id=1755588
    [27]
    S. S. Ge and Y. J. Cui, "New potential functions for mobile robot path planning, " IEEE Trans. Rob. Autom. , vol. 16, no. 5, pp. 615-620, Oct. 2000. http://ieeexplore.ieee.org/document/880813/
    [28]
    P. Trautman, J. Ma, R. M. Murray, and A. Krause, "Robot navigation in dense human crowds: Statistical models and experimental studies of human-robot cooperation, " Int. J. Rob. Res. , vol. 34, no. 3, pp. 335-356, Mar. 2015. http://dl.acm.org/citation.cfm?id=2744158
    [29]
    Y. Golan, S. Edelman, A. Shapiro, and E. Rimon, "Online robot navigation using continuously updated artificial temperature gradients, " IEEE Rob. Automat. Lett. , vol. 2, no. 3, pp. 1280-1287, Jul. 2017. http://ieeexplore.ieee.org/document/7845581
    [30]
    E. Galceran and M. Carreras, "A survey on coverage path planning for robotics, " Rob. Auton. Syst. , vol. 61, no. 12, pp. 1258-1276, Dec. 2013. http://dl.acm.org/citation.cfm?id=2542724
    [31]
    T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, "Human-aware robot navigation: A survey, " Rob. Auton. Syst. , vol. 61, no. 12, pp. 1726-1743, Dec. 2013. http://dl.acm.org/citation.cfm?id=2542686.2542722
    [32]
    E. Trulls, A. Corominas Murtra, J. Pérez-Ibarz, G. Ferrer, D. Vasquez, J. M. Mirats-Tur, and A. Sanfeliu, "Autonomous navigation for mobile service robots in urban pedestrian environments, " J. Field Rob. , vol. 28, no. 3, pp. 329-354, May-Jun. 2011. http://dl.acm.org/citation.cfm?id=1967384
    [33]
    W. Chung, S. Kim, M. Choi, J. Choi, H. Kim, C. B. Moon, and J. B. Song, "Safe navigation of a mobile robot considering visibility of environment, " IEEE Trans. Ind. Electron. , vol. 56, no. 10, pp. 3941-3950, Oct. 2009. http://ieeexplore.ieee.org/document/5109666/
    [34]
    H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning, " Int. J. Rob. Res. , vol. 35, no. 11, pp. 1289-1307, Sep. 2016. http://dl.acm.org/citation.cfm?id=3014318
    [35]
    A. V. Savkin and C. Wang, "Seeking a path through the crowd: Robot navigation in unknown dynamic environments with moving obstacles based on an integrated environment representation, " Rob. Auton. Syst. , vol. 62, no. 10, pp. 1568-1580, Oct. 2014. http://www.sciencedirect.com/science/article/pii/S0921889014000955
    [36]
    B. Lau, C. Sprunk, and W. Burgard, "Efficient grid-based spatial representations for robot navigation in dynamic environments, " Rob. Auton. Syst. , vol. 61, no. 10, pp. 1116-1130, Oct. 2013. http://www.sciencedirect.com/science/article/pii/S092188901200142X
    [37]
    J. Wang, S. Schroedl, K. Mezger, R. Ortloff, A. Joos, and T. Passegger, "Lane keeping based on location technology, " IEEE Trans. Intell. Transport. Syst. , vol. 6, no. 3, pp. 351-356, Sep. 2005. http://ieeexplore.ieee.org/document/1504794/
    [38]
    D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry for ground vehicle applications, " J. Field Rob. , vol. 23, no. 1, pp. 3-20, Jan. 2006. http://www.mendeley.com/catalog/visual-odometry-ground-vehicle-applications/
    [39]
    B. Kim and K. Yi, "Probabilistic and holistic prediction of vehicle states using sensor fusion for application to integrated vehicle safety systems, " IEEE Trans. Intell. Transport. Syst. , vol. 15, no. 5, pp. 2178-2190, Oct. 2014. http://ieeexplore.ieee.org/document/6815699/
    [40]
    H. L. Yu, K. Meier, M. Argyle, and R. W. Beard, "Cooperative path planning for target tracking in urban environments using unmanned air and ground vehicles, " IEEE/ASME Trans. Mech. , vol. 20, no. 2, pp. 541-552, Apr. 2015. http://ieeexplore.ieee.org/document/6732930/
    [41]
    Y. F. Cai, Z. M. Tang, Y. H. Ding, and B. Qian, "Theory and application of multi-robot service-oriented architecture, " IEEE/CAA J. Automat. Sin. , vol. 3, no. 1, pp. 15-25, Jan. 2016. http://ieeexplore.ieee.org/document/7373758/
    [42]
    A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, "Optimality and robustness in multi-robot path planning with temporal logic constraints, " Int. J. Rob. Res. , vol. 32, no. 8, pp. 889-911, Jul. 2013. http://dl.acm.org/citation.cfm?id=2502923.2502929
    [43]
    K. G. Jolly, R. S. Kumar, and R. Vijayakumar, "A bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits, " Rob. Auton. Syst. , vol. 57, no. 1, pp. 23-33, Jan. 2009. http://dl.acm.org/citation.cfm?id=1464537.1465437&coll=DL&dl=GUIDE&CFID=559276766&CFTOKEN=52010871
    [44]
    S. Kloder and S. Hutchinson, "Path planning for permutation-invariant multirobot formations, " IEEE Trans. Rob. , vol. 22, no. 4, pp. 650-665, Aug. 2006. http://ieeexplore.ieee.org/document/1668251/
    [45]
    R. X. Cui, Y. Li, and W. S. Yan, "Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 7, pp. 993-1004, Jul. 2016. http://ieeexplore.ieee.org/document/7345594/
    [46]
    U. A. Syed, F. Kunwar, and M. Iqbal, "Guided autowave pulse coupled neural network (GAPCNN) based real time path planning and an obstacle avoidance scheme for mobile robots, " Rob. Auton. Syst. , vol. 62, no. 4, pp. 474-486, Apr. 2014. http://dl.acm.org/citation.cfm?id=2592401
    [47]
    H. B. Duan and L. Z. Huang, "Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning, " Neurocomputing, vol. 125, pp. 166-171, Feb. 2014. http://dl.acm.org/citation.cfm?id=2562656
    [48]
    Y. Zhang, D. W. Gong, and J. H. Zhang, "Robot path planning in uncertain environment using multi-objective particle swarm optimization, " Neurocomputing, vol. 103, pp. 172-185, Mar. 2013. http://www.sciencedirect.com/science/article/pii/S0925231212007722
    [49]
    H. W. Mo and L. F. Xu, "Research of biogeography particle swarm optimization for robot path planning, " Neurocomputing, vol. 148, pp. 91-99, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0925231214009217
    [50]
    D. Q. Zhu, H. Huang, and S. X. Yang, "Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace, " IEEE Trans. Cybern. , vol. 43, no. 2, pp. 504-514, Apr. 2013. http://ieeexplore.ieee.org/document/6287602/
    [51]
    V. Roberge, M. Tarbouchi, and G. Labonté, "Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning, " IEEE Trans. Ind. Inform. , vol. 9, no. 1, pp. 132-141, Feb. 2013. http://ieeexplore.ieee.org/document/6198334/
    [52]
    H. Qu, S. X. Yang, A. R. Willms, and Z. Yi, "Real-time robot path planning based on a modified pulse-coupled neural network model, " IEEE Trans. Neural Networks, vol. 20, no. 11, pp. 1724-1739, Nov. 2009. http://ieeexplore.ieee.org/document/5256181/
    [53]
    J. D. Seelig and V. Jayaraman, "Neural dynamics for landmark orientation and angular path integration, " Nature, vol. 521, no. 7551, pp. 186-191, May 2015. http://pubmedcentralcanada.ca/pmcc/articles/PMC4704792/
    [54]
    E. Burdet, R. Osu, D. W. Franklin, T. Milner, and M. Kawato, "The central nervous system stabilizes unstable dynamics by learning optimal impedance, " Nature, vol. 414, no. 6862, pp. 446-449, Nov. 2001. http://www.ncbi.nlm.nih.gov/pubmed/11719805
    [55]
    W. He, H. F. Huang, and S. Z. S. Ge, "Adaptive neural network control of a robotic manipulator with time-varying output constraints, " IEEE Trans. on Cybern., vol. 47, no. 10, pp. 3136-3147, 2017. doi: 10.1109/TCYB.2017.2711961
    [56]
    W. He, B. Huang, Y. T. Dong, Z. J. Li, and C. -Y. Su, "Adaptive Neural Network Control for Robotic Manipulators with Unknown Deadzone, " IEEE Trans. on Cybern. , 2017, DOI: 10.1109/TCYB.2017.2748418,tobepublished.
    [57]
    W. He, W. L. Ge, Y. C. Li, Y. J. Liu, C. G. Yang, and C. Y. Sun, "Model identification and control design for a humanoid robot, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 47, no. 1, pp. 45-57, Jan. 2017. http://ieeexplore.ieee.org/document/7469783/
    [58]
    W. He, Y. H. Chen, and Z. Yin, "Adaptive neural network control of an uncertain robot with full-state constraints, " IEEE Trans. Cybern. , vol. 46, no. 3, pp. 620-629, Mar. 2016. http://ieeexplore.ieee.org/document/7078921/
    [59]
    W. He, S. S. Ge, Y. N. Li, E. Chew, and Y. S. Ng, "Neural network control of a rehabilitation robot by state and output feedback, " J. Intell. Rob. Syst. , vol. 80, no. 1, pp. 15-31, Oct. 2015. doi: 10.1007/s10846-014-0150-6
    [60]
    Z. J. Li, S. S. Z. Ge, and A. G. Ming, "Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, " IEEE Trans. Syst. Man Cybern. , vol. 37, no. 3, pp. 607-16, Jun. 2007. http://dl.acm.org/citation.cfm?id=2226666
    [61]
    C. G. Yang, Z. J. Li, and J. Li, "Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models, " IEEE Trans. Cybern. , vol. 43, no. 1, pp. 24-36, Feb. 2013. http://europepmc.org/abstract/med/22695357
    [62]
    Z. J. Li, C. Y. Su, L. Y. Wang, Z. T. Chen, and T. Y. Chai, "Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation, " IEEE Trans. Ind. Electron. , vol. 62, no. 9, pp. 5763-5775, Sep. 2015. http://ieeexplore.ieee.org/document/7128705/
    [63]
    Z. Li, S. S. Ge, M. Adams, and W. S. Wijesoma, "Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators, " Automatica, vol. 44, no. 3, pp. 776-784, Mar. 2008. http://www.sciencedirect.com/science/article/pii/S0005109807003627
    [64]
    Z. J. Li, S. S. Ge, and S. B. Liu, "Contact-force distribution optimization and control for quadruped robots using both gradient and adaptive neural networks, " IEEE Trans. Neural Networks Learn. Syst. , vol. 25, no. 8, pp. 1460-1473, Aug. 2014. http://ieeexplore.ieee.org/document/6687263/
    [65]
    C. G. Yang, Z. J. Li, R. X. Cui, and B. G. Xu, "Neural network-based motion control of an underactuated wheeled inverted pendulum model, " IEEE Trans. Neural Networks Learn. Syst. , vol. 25, no. 11, pp. 2004-2016, Nov. 2014. http://ieeexplore.ieee.org/document/6762995/
    [66]
    C. G. Yang, Y. M. Jiang, Z. J. Li, W. He, and C. Y. Su, "Neural control of bimanual robots with guaranteed global stability and motion precision, " IEEE Trans. Ind. Inform. , vol. 13, no. 3, pp. 1162-1171, Jun. 2017. http://ieeexplore.ieee.org/document/7574390/
    [67]
    W. He, A. O. David, Z. Yin, and C. Y. Sun, "Neural network control of a robotic manipulator with input deadzone and output constraint, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 6, pp. 759-770, Jun. 2016. http://ieeexplore.ieee.org/document/7222457/
    [68]
    W. He and Y. T. Dong, "Adaptive fuzzy neural network control for a constrained robot using impedance learning, " IEEE Trans. Neural Networks Learn. Syst. , 2017, doi: 10.1109/TNNLS.2017.2665581.tobepublished
    [69]
    Z. J. Li, Q. B. Ge, W. J. Ye, and P. J. Yuan, "Dynamic balance optimization and control of quadruped robot systems with flexible joints, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 10, pp. 1338-1351, Oct. 2016. http://ieeexplore.ieee.org/document/7360224/
    [70]
    Z. J. Li, C. Y. Su, G. L. Li, and H. Su, "Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs, " IEEE Trans. Fuzzy Syst. , vol. 23, no. 3, pp. 555-566, Jun. 2015. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6798669
    [71]
    W. He, Y. T. Dong, and C. Y. Sun, "Adaptive neural impedance control of a robotic manipulator with input saturation, " IEEE Trans. Syst. Man Cybern. : Syst. , vol. 46, no. 3, pp. 334-344, Mar. 2016. http://ieeexplore.ieee.org/document/7113913/
    [72]
    B. Babenko, M. H. Yang, and S. Belongie, "Robust object tracking with online multiple instance learning, " IEEE Trans. Patt. Anal. Mach. Intell. , vol. 33, no. 8, pp. 1619-1632, Aug. 2011. http://ieeexplore.ieee.org/abstract/document/5674053/
    [73]
    D. Wang, H. C. Lu, and M. H. Yang, "Online object tracking with sparse prototypes, " IEEE Trans. Image Procesl. , vol. 22, no. 1, pp. 314-325, Jan. 2013. http://ieeexplore.ieee.org/document/6212358
    [74]
    A. Chander, A. Chatterjee, and P. Siarry, "A new social and momentum component adaptive PSO algorithm for image segmentation, " Expert Syst. Appl. , vol. 38, no. 5, pp. 4998-5004, May 2011. http://www.sciencedirect.com/science/article/pii/S0957417410011085
    [75]
    J. Z. Wang, J. Li, and G. Wiederhold, "Simplicity: Semantics-sensitive integrated matching for picture libraries, " IEEE Trans. Patt. Anal. Mach. Intell. , vol. 23, no. 9, pp. 947-963, Sep. 2001. doi: 10.1109/34.955109
    [76]
    X. Z. Bai, Y. Zhang, F. G. Zhou, and B. D. Xue, "Quadtree-based multi-focus image fusion using a weighted focus-measure, " Inform. Fusion, vol. 22, pp. 105-118, Mar. 2015. http://www.sciencedirect.com/science/article/pii/S1566253514000669
    [77]
    A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard, and Y. Laurillau, "EMG feature evaluation for improving myoelectric pattern recognition robustness, " Expert Syst. Appl. , vol. 40, no. 12, pp. 4832-4840, Sep. 2013. http://www.sciencedirect.com/science/article/pii/S0957417413001395
    [78]
    A. J. Young, L. H. Smith, E. J. Rouse, and L. J. Hargrove, "Classification of simultaneous movements using surface EMG pattern recognition, " IEEE Trans. Biomed. Eng. , vol. 60, no. 5, pp. 1250-1258, May 2013. http://ieeexplore.ieee.org/document/6377275/
    [79]
    Y. H. Yin, Y. J. Fan, and L. D. Xu, "EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 16, no. 4, pp. 542-549, Jul. 2012. http://ieeexplore.ieee.org/document/6126040/
    [80]
    J. U. Chu, I. Moon, and M. S. Mun, "A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand, " IEEE Trans. Biomed. Eng. , vol. 53, no. 11, pp. 2232-2239, Nov. 2006. http://ieeexplore.ieee.org/document/1710164/
    [81]
    J. U. Chu, I. Moon, Y. J. Lee, S. K. Kim, and M. S. Mun, "A supervised feature-projection-based real-time emg pattern recognition for multifunction myoelectric hand control, " IEEE/ASME Trans. Mech, vol. 12, no. 3, pp. 282-290, Jun. 2007. http://ieeexplore.ieee.org/document/4244373/
    [82]
    A. B. Ajiboye and R. F. Weir, "A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control, " IEEE Trans. Neural Syst. Rehab. Eng. , vol. 13, no. 3, pp. 280-291, Sep. 2005. http://ieeexplore.ieee.org/document/1506815/
    [83]
    E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, "A human aware mobile robot motion planner, " IEEE Trans. Rob. , vol. 23, no. 5, pp. 874-883, Oct. 2007. http://ieeexplore.ieee.org/document/4339546/
    [84]
    K. Morioka, J. H. Lee, and H. Hashimoto, "Human-following mobile robot in a distributed intelligent sensor network, " IEEE Trans. Ind. Electron. , vol. 51, no. 1, pp. 229-237, Feb. 2004. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1265801
    [85]
    W. Chung, H. Kim, Y. Yoo, C. B. Moon, and J. Park, "The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder, " IEEE Trans. Ind. Electron. , vol. 59, no. 8, pp. 3156-3166, Aug. 2012. http://ieeexplore.ieee.org/document/6032092/
    [86]
    F. Ficuciello, L. Villani, and B. Siciliano, "Variable impedance control of redundant manipulators for intuitive human-robot physical interaction, " IEEE Trans. Rob. , vol. 31, no. 4, pp. 850-863, Aug. 2015. http://ieeexplore.ieee.org/document/7110619/
    [87]
    K. Wakita, J. Huang, P. Di, K. Sekiyama, and T. Fukuda, "Human-walking-intention-based motion control of an omnidirectional-type cane robot, " IEEE/ASME Trans. Mech, vol. 18, no. 1, pp. 285-296, Feb. 2013. http://ieeexplore.ieee.org/document/6054057/
    [88]
    S. Lim, D. Son, J. Kim, Y. B. Lee, J. K. Song, S. Choi, D. J. Lee, J. H. Kim, M. Lee, T. Hyeon, and D. H. Kim, "Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures, " Adv. Funct. Mater. , vol. 25, no. 3, pp. 375-383, Jan. 2015. http://www.chemie.de/fachpublikationen/741632/transparent-and-stretchable-interactive-human-machine-interface-based-on-patterned-graphene-heterostructures.html
    [89]
    S. Waldherr, R. Romero, and S. Thrun, "A gesture based interface for human-robot interaction, " Rob. Auton. Syst. , vol. 9, no. 2, pp. 151-173, Sep. 2000. doi: 10.1023/A%3A1008918401478
    [90]
    J. W. Crandall, M. A. Goodrich, D. R. Olsen, and C. W. Nielsen, "Validating human-robot interaction schemes in multitasking environments, " IEEE Trans. Syst. Man Cybern. , vol. 35, no. 4, pp. 438-449, Jul. 2005. http://ieeexplore.ieee.org/document/1453692/
    [91]
    J. G. Trafton, N. L. Cassimatis, M. D. Bugajska, D. P. Brock, F. E. Mintz, and A. C. Schultz, "Enabling effective human-robot interaction using perspective-taking in robots, " IEEE Trans. Syst. Man Cybern. , vol. 35, no. 4, pp. 460-470, Jul. 2005. http://ieeexplore.ieee.org/document/1453694/

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2863) PDF downloads(513) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return